
Algorithms Theoretical Definition Document, 30 May 2010  -  ATDD-13 (Product SN-OBS-13)                                         Page      1   

 

 

 

 
Italian Meteorological Service Italian Department of Civil Defence 

 
 

Algorithm Theoretical Definition Document (ATDD) 

for product 
 

SN-OBS-4 - Snow water equivalent by MW radiometry 
 
 
 

       
Zentralanstalt für 
Meteorologie und 

Geodynamik 

Vienna University of Technology 
Institut für Photogrammetrie 

und Fernerkundung 

Royal Meteorological 
Institute of Belgium 

European Centre for Medium-Range 
Weather Forecasts 

Finnish Meteorological 
Institute 

Finnish Environment 
Institute 

Helsinki University 
of Technology 

       

 
 

     

Météo-France 
CNRS Laboratoire Atmosphères, 
Milieux, Observations Spatiales 

CNRS Centre d'Etudes 
Spatiales de la BIOsphere 

Bundesanstalt für 
Gewässerkunde 

Hungarian 
Meteorological Service 

CNR - Istituto Scienze 
dell’Atmosfera 

e del Clima 
Università di Ferrara 

       

       
Institute of Meteorology 
and Water Management 

Romania National 
Meteorological Administration 

Slovak Hydro-Meteorological 
Institute 

Turkish State 
Meteorological Service 

Middle East Technical 
University 

Istanbul Technical 
University 

Anadolu University 

 
 

30 May 2010 



Algorithms Theoretical Definition Document, 30 May 2010  -  ATDD-13 (Product SN-OBS-13)                                         Page      2   

Algorithm Theoretical Definition Document ATDD-13 

Product SN-OBS-4 

Snow water equivalent by MW radiometry 
 

 

INDEX 

 

             

          Page 

Acronyms            04 

1. The EUMETSAT Satellite Application Facilities and H-SAF    06 

2. Introduction to product SN-OBS-4        07 

2.1 Sensing principle          07 

2.2 Main operational characteristics        07 

2.3 Architecture of the products generation chain       08 

2.4 Product development team         08 

3. Processing concept          09 

3.1 Flat and forested areas    [TKK]      09 

3.2 Mountainous regions    [METU]     09 

4. Algorithms description         11 

4.1 Flat and forested areas    [TKK]      11 

4.2 Mountainous regions    [METU]     14 

4.3 Algorithm validation/heritage         19 

4.3.1 Flat and forested areas    [TKK]      19 

4.3.2 Mountainous regions    [METU]     19 

5. Merging products for flat/forested and mountainous areas    21 

5.1 Merging according the H-SAF mountain mask      21 

5.2 Comparison with the GlobSnow mask  [METU]     22 

6. Examples of snow water equivalent maps       27 

References            28 

 



Algorithms Theoretical Definition Document, 30 May 2010  -  ATDD-13 (Product SN-OBS-13)                                         Page      3   

List of Tables 
 

Table 01 List of H-SAF products 06 

Table 02 Development team for product SN-OBS-4 08 

Table 03 Pre-fixed HUT snow emission model parameter values for Northern Eurasia 11 

Table 04 Prefixed HUT model parameters 16 

Table 05 Mean Model Error (K) of Stations for whole period (2003-2007) at Vertical, 

Horizontal Polarizations 

17 

Table 06 Calculated a and b coefficients for January, February and March using equation (16) 18 

Table 07 Calculated and measured snow densities at three AWOS 18 

Table 08 Calculated x and y coefficients for equation (18) 18 

Table 09 Quantitative performance of Snow depth and SWE retrieval for a Finnish test site 

when using interpolation of ground-based measurements and assimilation of satellite 

data to the interpolation result 

19 

Table 10 SWE Validation Study Results Summary for 2009 October-2010 March period 20 

Table 11 Statistical results of overlay analysis with GTOPO DEM over Alps 24 

Table 12 Percentages of mountain mask pixels over elevation zones 25 

 

List of Figures 
 

Fig. 01 Conceptual scheme of the EUMETSAT application ground segment 06 

Fig. 02 Current composition of the EUMETSAT SAF network (in order of establishment) 06 

Fig. 03 Geometry of conical scanning for AMSR-E 07 

Fig. 04 Mask flat/forested versus mountainous regions 07 

Fig. 05 Conceptual architecture of the SN-OBS-4 chain 08 

Fig. 06 Flow diagram of the assimilation method in the case of AMSR-E observations in 

flat/forested areas 

09 

Fig. 07 Flow diagram of the assimilation method in the case of AMSR-E observations in 

mountainous areas 

10 

Fig. 08 Input and output schema of HUT 15 

Fig. 09 Measured extinction coefficients against grain size and fitted equation by Hallikainen et 

al. (1987) 

15 

Fig. 10 Measured extinction coefficients against grain size and fitted equation given in (15) 16 

Fig. 11 Data assimilation schema for obtaining grain size 17 

Fig. 12 SWE Validation Study Results Summary Plot for 2009 October-2010 March period 20 

Fig. 13 Generation of look-up table for merging mountainous and non-mountainous products 21 

Fig. 14 Flowchart of snow cover product merging 22 

Fig. 15 The overlay map of HSAF and GlobSnow mountain masks over GTOPO DEM 23 

Fig. 16 Closer view of overlay map focusing Turkey 23 

Fig. 17 Closer view of overlay map focusing Tatra and Carpathian Mountains 24 

Fig. 18 Closer view of overlay map focusing Alps 24 

Fig. 19 The mean values of 3 classes over Alps AOI 25 

Fig. 20 The areal distribution of masks over elevation zones 25 

Fig. 21 Snow water equivalent from EOS-Aqua AMSR-E - Time-composite maps over 24 

hours, 18 March 2010 

27 



Algorithms Theoretical Definition Document, 30 May 2010  -  ATDD-13 (Product SN-OBS-13)                                         Page      4   

 

Acronyms 

AMSR-E Advanced Microwave Scanning Radiometer for EOS (on EOS-Aqua) 

ATDD  Algorithms Theoretical Definition Document 

AU  Anadolu University (in Turkey) 

BfG  Bundesanstalt für Gewässerkunde (in Germany) 

CAF  Central Application Facility (of EUMETSAT) 

CESBIO Centre d'Etudes Spatiales de la BIOsphere (of CNRS, in France) 

CM-SAF SAF on Climate Monitoring 

CNMCA Centro Nazionale di Meteorologia e Climatologia Aeronautica (in Italy) 

CNR  Consiglio Nazionale delle Ricerche (of Italy) 

CNRS  Centre Nationale de la Recherche Scientifique (of France) 

DEM  Digital Elevation Model 

DMSP  Defence Meteorological Satellite Program 

DPC  Dipartimento Protezione Civile (of Italy) 

DWD  Deutscher Wetterdienst 

ECMWF European Centre for Medium-range Weather Forecasts 

EOS   Earth Observing System (Terra, Aqua, Aura) 

EUM  Short for EUMETSAT 

EUMETCast EUMETSAT‟s Broadcast System for Environmental Data   

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 

FMI  Finnish Meteorological Institute 

FTP  File Transfer Protocol 

GEO  Geostationary Earth Orbit 

GRAS-SAF SAF on GRAS Meteorology 

GTOPO Global digital elevation model (U.S. Geological Survey) 

H-SAF  SAF on Support to Operational Hydrology and Water Management 

HUT  Helsinki University of Technology (same as TKK) 

IFOV  Instantaneous Field Of View 

IMWM  Institute of Meteorology and Water Management (in Poland) 

IPF  Institut für Photogrammetrie und Fernerkundung (of TU-Wien, in Austria) 

IR  Infra Red 

IRM  Institut Royal Météorologique (of Belgium) (alternative of RMI) 

ISAC  Istituto di Scienze dell‟Atmosfera e del Clima (of CNR, Italy) 

ITU  İstanbul Technical  University (in Turkey) 

LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (of CNRS, in France) 

LEO  Low Earth Orbit 

LSA-SAF SAF on Land Surface Analysis 

Météo France National Meteorological Service of France 

METU  Middle East Technical University (in Turkey) 

MW  Micro Wave 

NASA  National Aeronautical and Space Administration (in USA) 

NMA  National Meteorological Administration (of Romania) 

NOAA  National Oceanic and Atmospheric Administration (Agency and satellite) 

NWC  Nowcasting 

NWC-SAF SAF in support to Nowcasting & Very Short Range Forecasting 

NWP  Numerical Weather Prediction  

NWP-SAF SAF on Numerical Weather Prediction 

O3M-SAF SAF on Ozone and Atmospheric Chemistry Monitoring 

OMSZ  Hungarian Meteorological Service 

OSI-SAF SAF on Ocean and Sea Ice 

Pixel  Picture element 



Algorithms Theoretical Definition Document, 30 May 2010  -  ATDD-13 (Product SN-OBS-13)                                         Page      5   

PUM  Product User Manual 

PVR  Product Validation Report 

REP-3  H-SAF Products Validation Report  

RMI  Royal Meteorological Institute (of Belgium) (alternative of IRM) 

RMSE  Root Mean Square Error 

SAF  Satellite Application Facility 

SCA  Snow Covered Area 

SD  Snow Depth 

SHMÚ  Slovak Hydro-Meteorological Institute 

SSM/I  Special Sensor Microwave / Imager (on DMSP up to F-15) 

SSMIS  Special Sensor Microwave Imager/Sounder (on DMSP starting with S-16) 

STD  Standard Deviation 

SVRR  System Validation Results Review 

SWE  Snow Water Equivalent 

SYKE  Suomen ympäristökeskus (Finnish Environment Institute) 

TKK  Teknillinen korkeakoulu (Helsinki University of Technology) 

TSMS  Turkish State Meteorological Service 

TU-Wien Technische Universität Wien (in Austria) 

UniFe  University of Ferrara (in Italy) 

VIS  Visible 

ZAMG  Zentralanstalt für Meteorologie und Geodynamik (of Austria) 



Algorithms Theoretical Definition Document, 30 May 2010  -  ATDD-13 (Product SN-OBS-13)                                         Page      6   

1. The EUMETSAT Satellite Application Facilities and H-SAF 

The “EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water 

Management (H-SAF)” is part of the distributed application ground segment of the “European 

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)”.  The application ground 

segment consists of a “Central Application Facility (CAF)” and a network of eight “Satellite 

Application Facilities (SAFs)” dedicated to development and operational activities to provide satellite-

derived data to support specific user communities.  See Fig. 01. 

 

Fig. 01 - Conceptual scheme of the EUMETSAT application ground segment. 

Fig. 02 reminds the current composition of the EUMETSAT SAF network (in order of establishment). 
 

        
Nowcasting & Very 

Short Range Forecasting Ocean and Sea Ice Ozone & Atmospheric 
Chemistry Monitoring Climate Monitoring Numerical Weather 

Prediction 
GRAS Meteorology Land Surface Analysis Operational Hydrology 

& Water Management 

Fig. 02 - Current composition of the EUMETSAT SAF network (in order of establishment). 

The H-SAF was established by the EUMETSAT Council on 3 July 2005; its Development Phase started 

on 1st September 2005 and ends on 31 August 2010.  The list of H-SAF products is shown in Table 01. 
 

Table 01 - List of H-SAF products 

Code Acronym Product name 

H01 PR-OBS-1 Precipitation rate at ground by MW conical scanners (with indication of phase) 

H02 PR-OBS-2 Precipitation rate at ground by MW cross-track scanners (with indication of phase) 

H03 PR-OBS-3 Precipitation rate at ground by GEO/IR supported by LEO/MW 

H04 PR-OBS-4 Precipitation rate at ground by LEO/MW supported by GEO/IR (with flag for phase) 

H05 PR-OBS-5 Accumulated precipitation at ground by blended MW and IR 

H06 PR-ASS-1 Instantaneous and accumulated precipitation at ground computed by a NWP model 

H07 SM-OBS-1 Large-scale surface soil moisture by radar scatterometer 

H08 SM-OBS-2 Small-scale surface soil moisture by radar scatterometer 

H09 SM-ASS-1 Volumetric soil moisture (roots region) by scatterometer assimilation in NWP model 

H10 SN-OBS-1 Snow detection (snow mask) by VIS/IR radiometry 

H11 SN-OBS-2 Snow status (dry/wet) by MW radiometry 

H12 SN-OBS-3 Effective snow cover by VIS/IR radiometry 

H13 SN-OBS-4 Snow water equivalent by MW radiometry 

 

Decentralised processing 

and generation of products 

EUM Geostationary 
Systems 

Systems of the 
EUM/NOAA 

Cooperation 

Centralised processing 

and generation of products  

Data Acquisition 
and Control 

Data Processing 
EUMETSAT HQ 

Meteorological Products 
Extraction 

EUMETSAT HQ 

Archive & Retrieval 
Facility (Data Centre) 

EUMETSAT HQ 

USERS 

Application Ground Segment 

other data 
sources 

       
Satellite Application 

Facilities (SAFs) 
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2. Introduction to product SN-OBS-4  

2.1 Sensing principle 

Product SN-OBS-4 (Snow water equivalent by MW 

radiometry) is fundamentally based on the AMSR-

E microwave radiometer being flown on EOS-

Aqua.  In case of failure of AMSR-E or of EOS-

Aqua, SSM/I and SSMIS flown on the DMSP 

satellites will be used (with much worse 

resolution).  These conical scanners provide images 

with constant zenith angle, that implies constant 

optical path in the atmosphere and homogeneous 

impact of the polarisation effects (see Fig. 03). 

Also, conical scanning provides constant resolution 

across the image, though changing with frequency.  

It is noted that the IFOV is elliptical, with major 

axis elongated along the viewing direction and the 

minor axis along-scan, approximately 2/3 of the 

major.  As for the „pixel‟, i.e. the area subtended as 

a consequence of the bi-dimensional sampling rate, 

the sampling distance along the satellite motion, i.e. 

from scan line to scan line, is invariably 10 km, 

dictated by the satellite velocity on the ground and 

the scan rate.  Along scan, the sampling rate is 10 

km for all channels except 89 GHz where is 5 km. 

The SN-OBS-4 product is actually the result of an 

assimilation process.  The basic (very sparse) 

ground network of stations performing snow depth 

observation provides a first guess field that is 

converted into MW brightness temperatures by an 

emission model that also accounts for forests.  The assimilation process forces the first guess field to 

optimally match the AMSR-E brightness temperatures. 

The retrieval algorithm is somewhat different for flat or forested area and for mountainous regions.  SN-

OBS-4 is generated in Finland by FMI and in Turkey by TSMS.  The products from FMI and from 

TSMS both cover the full H-SAF area, but thereafter are merged at FMI by blending the information on 

flat/forested areas from the FMI product and that one on mountainous areas from the TSMS product, 

according to the mask shown in Fig. 04. 

For more information, please refer to the Products User Manual (specifically, volume PUM-13). 

2.2 Main operational characteristics 

The operational characteristics of SN-OBS-4 are discussed in PUM-13.  Here are the main highlights. 

The horizontal resolution (x).  For MW conical scanners the IFOV is constant, but depends on the 

frequency channels utilised for building the product.  The current algorithm utilises the two frequencies 

18.7 and 36.5 GHz, thus the resolution is that one of AMSR-E at 18.7 GHz, i.e. ~ 20 km.  Sampling is 

made at 0.25° intervals.  Conclusion: 

 resolution: x ~ 20 km   -   sampling distance: ~ 20 km. 

The observing cycle (t).  AMSR-E is available only on one satellite, and its swath is 1450 km, thus in 

principle provides global coverage every 24 h.  Conclusion: 

 observing cycle: t = 24 h.   

Fig. 03 - Geometry of conical scanning for AMSR-E. 

Fig. 04 - Mask flat/forested versus mountainous regions. 
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The timeliness ().  For a product resulting from multi-temporal analysis disseminated at a fixed time of 

the day, the time of observation may change pixel by pixel (some pixel may have been cloud-free early 

in the time window, e.g. in the early morning, thus up to 12-h old at the time of dissemination; some 

very recently, just before product dissemination in the late afternoon).  Thus the average timeliness is: 

 timeliness  ~ 6 h. 

The accuracy is evaluated a-posteriori by means of the validation activity.  See Product Validation 

Report PVR-13. 

2.3 Architecture of the product generation chain 

The architecture of the SN-OBS-4 product generation chain is shown in Fig. 05. 

It is noted that the satellite data are acquired from the NASA EOS-Aqua AMSR-E FTP site. The 

product is generated both at FMI and at TSMS.  The FMI product is tuned to flat/forested areas, that one 

from TSMS is tuned to mountainous areas.  The TSMS data are delivered to FMI, that implements the 

merging of the two products according to the mask shown in Fig. 04. 

Currently, the products are held on the TSMS server (mountainous areas) and on the FMI and CNMCA 

servers (both flat/forested areas and merged).  Eventually, only the merged product will be disseminated 

through EUMETCast. 

2.4 Product development team 

Names and coordinates of the main actors for SN-OBS-4 algorithm development and integration are 

listed in Table 02. 

Table 02 - Development team for product SN-OBS-4 

Jouni Pulliainen (Leader) 

Finnish Meteorological Institut (FMI) 
Finland 

jouni.pulliainen@fmi.fi 

Panu Lahtinen panu.lahtinen@fmi.fi 

Matias Takala  matias.takala@fmi.fi 

Juha-Petri Karna  Finnish Environment Institute (SYKE) juha-petri.karna@ymparisto.fi 

Ali Ünal Sorman (Co-leader)   sorman@metu.edu.tr 

Ozgur Beser Middle East Technical University (METU) Turkey beser@metu.edu.tr 

Zuhal Akyurek   zakyurek@metu.edu.tr 

Fig. 05 - Conceptual architecture of the SN-OBS-4 chain. 

FMI TSMS 
Snow water equivalent 
 in mountainous areas 
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in flat-forested areas 

Merging input from 

FMI and TSMS 

SM-OBS-4 
(flat/forested areas) 

SN-OBS-4 

(merged) 

SM-OBS-4 
(mountainous areas) 

NASA 
AMSR-E ftp site 

EOS-Aqua 
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3. Processing concept 

The processing concepts for product SN-OBS-4 applied in Finland (FMI) and Turkey (METU) are very 

similar.  They are recorded independently. 

3.1 Flat and forested areas        [TKK] 

Fig. 06 shows the flow diagram of the assimilation method, limited to the case of AMSR-E observations 

that are currently used for snow water equivalent retrieval in flat/forested areas. 

Fig. 06 - Flow diagram of the assimilation method in the case of AMSR-E observations in flat/forested areas. 

3.2 Mountainous regions        [METU] 

Fig. 07 shows the flow diagram of the assimilation method, limited to the case of AMSR-E observations 

that are currently used for snow water equivalent retrieval in mountainous regions. 
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Fig. 07 - Flow diagram of the assimilation method in the case of AMSR-E observations in mountainous areas. 
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4. Algorithms description 

4.1 Flat and forested areas        [TKK] 

The HUT snow emission model 

The HUT snow emission model describes the space-borne observed microwave brightness temperature 

as a function of snow pack characteristics and by considering the effects of atmosphere, forest canopy 

and land cover category (fractions of open and forested areas). A detailed description of the model and 

its performance is given by Pulliainen et al. 1999. The emission from a snow pack is modeled by 

applying the Delta-Eddington-approximation to the radiative transfer equation (considering the 

magnitude of forward scatter by an empirical coefficient). The multiple reflections from snow-ground 

and snow-air boundaries are included using a non-coherent approach and the effect of forest canopy 

(transmissivity and emission) is included by employing an empirical model (Kruopis et al. 1999). 

Finally, the transmissivity and emission contributions of the atmosphere are included using a statistical 

atmospheric model (Pulliainen et al. 1993). 

The input parameters of the HUT model include the snow pack characteristics (depth, density, effective 

grain size and temperature), soil properties (temperature, dielectric constant and effective rms height 

variation), forest canopy characteristics (stem volume/biomass) and near-surface air temperature 

dependent atmospheric emission and transmissivity contributions. The model formulation and its 

inversion are described in detail in (Pulliainen and Hallikainen 2001). Table 03 summarizes typical 

values of adjustable model parameters as the HUT model is applied to the inversion of space-borne data. 

A brief summary of the inversion technique follows here. 

 

Table 03 - Pre-fixed HUT snow emission model parameter values for Northern Eurasia 
 

Parameter Value 

Mean effective snow grain size, d0(mm) 1.3 

Variance of d0, var(d0) (mm2) 1.0 

Variance of modeling error, var()  (K2) 25 

Variance of  day-to-day SWE variation, var(W) (mm2) 25 

Snowpack density (g/cm3) 0.23 

Effective soil surface roughness (mm) 3 

Temperature, soil/snow/vegetation/near surface air (C º) -5 

Soil dielectric constant  6-1j 

Inversion of the snow emission model 

Let the vector y containing space-borne observed spectral and polarization brightness temperature 

differences be: 

y=[y1

y
2
]= [T b,19 V,obs

− T
b,37 V,obs

T
b,19 V,obs

− T
b,19 ,H,obs

] , (1) 

where Tb,19V,obs is the brightness temperature observed at a vertically polarized channel (close to) the 

frequency of 19 GHz. Accordingly, subscript H denotes horizontal polarization and 37 stands for the 

frequency region of about 37 GHz. 

The main snow pack characteristics affecting brightness temperatures at 19 and 37 GHz regions include 

the snow water equivalent, SWE, denoted here by W and the snow grain size (d0). Brightness 

temperature differences according to (1) can be modeled by applying the HUT snow emission model. 

For simplicity we denote this direct modeling of channel differences by f(x), where 

x=[W d0 ]
T

 (2) 

and thus 
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



























2

1

2

1

ε

ε+

(x)f

(x)f=ε+f(x)=y , (3) 

where ε is the vector of modeling error including the effect of instrument noise and  all inaccuracies of 

modeling. If modeling error is assumed to be non-biased and normally distributed, the conditional 

probability density of satellite observations y as a function of x obeys the multidimensional normal 

distribution, refer to e.g. (Pulliainen and Hallikainen 2001; Pulliainen et al. 2004). Further on, as the 

Bayes‟ theorem is applied we can write the expression for the conditional density of snow 

characteristics x taking also into account possible a priori information on snow grain size (diameter): 

     












 
2

0ref0,

ref0,

1 ˆ
2var

1

2

1
exp        dd

)(d
)df(W,yC)df(W,y

y)|dρ(W,=y)|ρ(x

0

T

0

0

, (4) 

where a priori information suggests that d0 is a normally distributed random variable with the expected 

value ref0,d̂  and variance var(d0,ref). C is the covariance matrix of modeling errors.  

The maximum likelihood modeled estimate on W and d0 is obtained by searching the global minimum 

of the absolute value of the exponent term given in (4), i.e. the minimum of the cost function J(W, d0): 

 

     












 
2

0ref0,

ref0,

1 ˆ
2var

1

2

1
dd

)(d
+)df(W,yC)df(W,y=)dJ(W, 0

T

00 . (5) 

Thus, the maximum likelihood estimate on SWE and grain size,  TdW=x
0

ˆˆˆ , must satisfy  
















0

ˆˆ
                    0

ˆˆ

0

00

d

)d=d,W{ =J(W
=

W

)d=d,W{ =J(W 00 . (6) 

As the HUT snow emission model is non-linear, the global minimum of (5) must be searched iteratively. 

If the correlation between modeling errors ε1 and ε2 is assumed to be close to zero (or unknown), the 

error covariance matrix C in (5) is a diagonal matrix and (5) leads to a common least squares problem: 

   













2

1

2

00,

0,

2 ˆ
var

1

var

1

=i

ref

ref

ii

i

dd
)(d

+(x)fy
)(ε

. (7) 

If a priori information on the temporal changes of SWE is available, this information can be also used 

to regulate the algorithm. In practice, this is reasonable when a time-series of brightness temperature 

observations are analyzed. In that case (7) modifies to: 

     
















 
2

1

2

1

0,

2

00,
2

varvar

ˆ

var=i t

tt

ref

ref

i

ii

)(W

WW
+

)(d

dd
+

)(ε

(x)fy
,       (8) 

where Wt-1 denotes the level of SWE on the day prior to the day under investigation and the variance of 

day-to-day changes in SWE is denoted by var(Wt) . 

Formulation (8) defines the inversion algorithm applied in this investigation. The algorithm considers 

the effect of possibly available a priori information. This is performed by weighing the satellite data 

(the first term of (8)) and reference information on snow grain size with their estimated statistical 

accuracy. If a priori information on SWE is available and that information has a Gaussian distributed 

uncertainty, it can be considered by summing it similarly to the d0 term in (7) and (8). Hence, (7) and (8) 

actually formulate the solution of the assimilation problem discussed next. 
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Assimilation technique 

The data-assimilation technique applies a single channel difference, y1 of (1). That is, the brightness 

temperature difference between vertically polarized AMSR-E (SSM/I) channels of 18.7 (19.0) and 36.5 

(37.0) GHz is used. This channel difference is the most commonly used index to derive SWE or SD 

(Chang et al. 1987). Again, the brightness temperature difference between the two channels is modelled 

by the HUT snow emission model. A maximum a posteriori probability of SWE or SD, when certain 

values of brightness temperatures are observed, is searched through the iterative inversion procedure 

analogously to (7). Ground-based (interpolated) SWE or SD value is employed as statistical a priori 

information. When meteorological synoptic SD observations are employed as a source of a priori 

information, the obtained SD estimates are converted to SWE estimates by multiplying them with snow 

density values that are regional and seasonal averages obtained from snow climatology (in case of 

testing the algorithm for Finland the climatology is obtained from snow course observation data). 

SWE (or SD) estimates for all locations are interpolated from distributed synoptic observations and 

these values are applied as a priori estimates on SWE, when the scene brightness temperature model is 

fitted to space-borne observations by optimizing the value of SWE. In the fitting procedure, the a priori 

SWE-value is weighed with its modelled statistical uncertainty determined using spatial data analysis 

techniques (Kriging interpolation). As well, the radiometer data is weighed with the estimated accuracy 

of brightness temperature modelling. In that case, weighing factors are determined by analysing how 

well the brightness temperature model describes the radiometer observations at the locations of synoptic 

observations for the day under investigation (in that phase the consideration of snow grain size is 

included in the algorithm). The inclusion of (interpolated) SWE estimates as a priori data regulates the 

optimization procedure. Hence, the assimilation can be performed using a single channel difference y1 

of (9), i.e. using the channel difference that has the highest correlation with SWE. 

We can write the assimilation algorithm as a three-stage optimization procedure (see Fig. 06 for the 

illustration). 

The first phase of the algorithm is the estimation of effective snow grain size at the locations of 

reference stations, for which SD is observed. The grain size estimation is conducted by fitting the 

modeled brightness temperature difference into the brightness temperature difference observed by the 

instrument: 

  0
2

11 )dD,(ρρfy 0 , (9) 

where D is the observed snow depth and ρ is snow density (note that W=Dρ ). ρ is treated as a constant 

(using a temporal mean value from monthly snow climatology). 

The procedure (9) is repeated for all reference stations for the day under investigation. The snow grain 

size for an arbitrary location (x, y) is then assumed to be equal to the mean of snow grain size estimated 

at its near-by-stations: 


M

=j

j,rd
M

=d
1

ef0,ref0,
ˆ1ˆ , (10) 

where M is the number of reference stations in the neighbourhood of the location under investigation. 

Nine closest stations are used in case of testing for Finland and four closest for Eurasia. In Finland, the 

maximum distance between neighbouring stations is less than 100 km, but in the Eurasian case this 

distance exceeds to almost 1000 km, which causes the low value, M  = 4. 

According to (10), the standard deviation of the effective snow grain size is estimated by 

  


M

=j

j,d0, dd
M

=λ
1

2

ref0,ref0,ref
ˆˆ

1

1
. (11) 

The second stage of the algorithm is the determination of SWE or SD estimate and its standard 

deviation for the location under investigation (x, y) from a set of distributed ground-based observations. 

Kriging interpolation (ordinary Kriging) is applied to synoptic SD observations, and SWE is estimated 
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from the SD-values by multiplying them with snow density reference information. In contrast to block 

averaging of (10), the Kriging interpolation takes into account the spatial autocorrelation of snow depth 

(the required semivariogram is estimated from the discrete SD observations). The resulting estimates 

are: 

 Interpolated SWE estimate refŴ (or SD estimate) for the location under investigation (x, y). 

 Standard deviation of the interpolated SWE estimate λ
W, ref , i.e. the statistical accuracy of the 

interpolated SWE estimate for the location (x, y) or alternatively the same value for the SD estimate 

λ D, ref . 

The third phase of the algorithm is the estimation of SWE for the location (x, y) at the moment of time 

(day) t by weighing the two data sources by their estimated variances: 
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Alternatively, (12) can be written in terms of snow depth SD. Fig 6.9 shows the general flow chart of 

the assimilation method indicating how different contributions of (12) are estimated. 

The third term in summation is an optional term that regulates the magnitude of day-to-day changes in 

SWE (W is the standard deviation of day-to-day changes in snow water equivalent). In the first term of 

(12), the standard deviation of random error in modelled brightness temperature difference ε1,t is 

estimated from the estimated standard deviation of effective snow grain size (, see (11)) through the 

linearization of the relation between the brightness temperature and snow grain size: 
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where ΔT
b
=y

1 .  

Note that var(ε1,t) in (13) is a function of SWE (denoted by Wt). When compared to (7) and (8), a major 

difference arises from the difference in determining the value of the term var(ε1,t). When the assimilation 

algorithm fits the modelled brightness temperature difference into the observed value at the locations of 

reference station according to (9), the only fitting parameter to be optimized is the effective snow grain 

size d0. Hence, the total modelling error evident for every location between the reference stations is 

reduced to the spatial inaccuracy of effective d0. As an outcome, the variance of modelling error, 

var(ε1,t) in (12), has to be determined as a function of snow grain size variance by (13). 

[Note] SWE mapping has a problem over lakes, because MW instruments may see the liquid water 

which may lie between ice and snow.  As for large lakes (e.g. Ladoga), the amount of snow is 

considerably less on their area than around them, so the synoptic weather data used as background in 

assimilation may overestimate the amount of snow.  For small lakes with low fractional coverage in a 

pixel the impact is lower, but the possible accuracy implications need to be studied further. 

4.2 Mountainous regions         [METU] 

Snow emission model 

The HUT snow emission model, which is described in section 4.1, is used. Input and output schema of 

HUT model is given in Fig. 08. Extinction coefficient e used in the original model is based on an 

experiment done by Hallikainen et al. (1987). He measured properties of 23 snow samples and used 18 
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of them for determining empirical relationship between extinction coefficient of snow against grain 

size(do) and frequency (f). The obtained empirical relationship is given in equation (14) 

0.28.20018.0 oe df
          (14) 

HUT 

Snow Emission Model

Snow Depth (cm)[SD]

Snow Density (g/cm3)[]

Snow Temp.(K)[Ts]
Soil Temperature (K)[Tg]

Vol. Soil Moist. (%)[mvg]

Surface Roughness (m)[rm]

Grain Size (mm)[d0]

Snow Moisture (%)[mv]

Emprical 

Extinction Coeff. 

Function

Frequency (GHz)[f]

Vertical Polarization Brightness Temperature (Ko) [TbV]

b

o

a

e dfK View Angle (degree)[q]

Horizontal Polarization Brightness Temperature (K) [TbH]

Soil Parameters

eK

 

Fig. 08 - Input and output schema of HUT. 

 

Measured 18GHz and 35 GHz extinction coefficients for 18 sample of snow coarse and fitted equation 

by Hallikainen is given in Fig. 09. R-square of fitted equation for 18GHz is 0.38 and for 35 GHz is 

0.85.  
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Fig. 09 - Measured extinction coefficients against grain size and fitted equation by Hallikainen et al. (1987). 
 

A new relationship for modeling extinction coefficient based on Hallikainen‟s data is proposed and 

given in Equation (15) 
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8.175.108.0 oe df
          (15) 

 

Measured 18GHz and 35 GHz extinction coefficients for 18 sample of snow coarse and fitted equation 

given in (15) is shown in Fig. 10. R-square of fitted equation given in (15) for 18GHz is 0.83 and for 35 

GHz is 0.83. 

 

 
 

Fig. 10 - Measured extinction coefficients against grain size and fitted equation given in (15). 

 

Performance of proposed extinction coefficient 

The snow measurements considered in this study were conducted inside Karasu Basin which is located 

in the eastern part of Turkey. Snow observations are done by means of Automated Weather Observing 

Stations (AWOS) which measure snow depth, snow density and snow temperature every 10 minutes. In 

this study Hacimahmut, Güzelyayla, Ovacik and Cat stations data were used. Elevations of these 

stations are 1965 m, 2065 m, 2130 m and 2340 m respectively. Period of January 1st to March 15th of 

years 2003-2007 is analyzed. In this period snow is mostly in dry state.  

The input parameters of the HUT model include the snow pack characteristics (snow depth (SD), 

density (), effective grain size (d0), and temperature(Ts)), soil properties (temperature(Tg), effective soil 

surface roughness (RMS) variation(rm), moisture content (mvg) ) and near-surface air temperature. 

Table 04 summarizes typical values of fixed model parameters, as the HUT model is applied to the 

inversion of space- borne data. For any AMSR-E pixel that includes any AWOS, it is assumed that 

station measured snow depth and density are homogenous inside that pixel. Therefore only unknown 

parameter for that pixel is mean grain size of snowpack. 

Table 04 - Prefixed HUT model parameters 

Parameter Value 

Snow Temperature ,Ts -3
o
C 

Snow moisture content, mv 0% 

Effective soil surface roughness, rm 2 mm 

Soil temperature, Tg -1
o
C 

Soil moisture content, mvg 1% 

For every station, HUT model is run by changing grain sizes in order to minimize sum of measured and 

modeled brightness temperature differences at 18.7 GHz and 36.5 GHz vertical channels. HUT model 

inversion for calculating grain size is given in Fig. 11. Therefore for every station considered mean 

grain sizes are calculated. 
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Fig. 11 - Data assimilation schema for obtaining grain size. 

 

Calculated mean of model errors (for selected periods of 2003 to 2007) for two channels namely 18.7 

GHz and 36.5 GHz vertical and horizontal polarization is given in Table 05. It is apparent that 36.5 GHz 

vertically polarized channel is simulated successfully by using both extinction coefficient relationships 

regarding mean error calculated. At 18.7 GHz channel mean error of proposed relationship is less than 

half of original one for both horizontal and vertical polarizations. 

 
Table 05 - Mean Model Error (K) of Stations for whole period (2003-2007) at Vertical, Horizontal Polarizations 

 

Band Equation (14) Equation (15) 

18.7V 5.75 2.73 

18.7H 10.37 3.79 

36.5V 0.29 0.46 

36.5H 4.48 4.79 

 

Assimilation technique 

In order to calculate SWE in each domain pixel one should calculate snow density and snow depth for 

the particular pixel in interest. Calculation of these two parameters is done by inversion of HUT 

emission model. Inputs of the HUT model is depicted in Fig. 08 and prefixed values are listed in Table 

04. The only unknown parameters are snow depth, snow density and effective grain size of snow layer.  

We searched a relationship between grain size, snow depth and brightness temperature difference of 

vertically polarized channels 18.7 GHZ and 36.5GHz as given in equation (16) 

B

dbdb

B

TaeSDae
T

SD



)(

)()( 00

        (16) 

where do is grain size; SD is snow depth; TB =TB,18.7-TB,36.5. 

a and b coefficients for each month during dry snow period is searched using calculated grain sizes by 

HUT. Results for January, February and March is tabulated in Table 06. All three months correlation 

coefficients are higher than 0.80. It is interesting that a coefficient decreases from January to March 

where b coefficient increases. 
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Table 06 - Calculated a and b coefficients for January, February and March using equation (16) 

Month a b RMSE R
2
 %95 a %95 b 

Sample 

Number 

January 21.94 -2.844 0.2344 0.8734 19.76, 24.12 
-2.966, 

-2.721 
351 

February 19.87 -2.666 0.2095 0.912 18.43, 21.31 
-2.759, 

-2.574 
341 

March 17.14 -2.378 0.3098 0.8289 14.72, 19.57 
-2.561, 

-2.196 
141 

 

If we multiply both side of Equation. (16) with snow density and take logarithms equation (17) is 

obtained. The calculated mean densities using Equation (17) for January, February and March using a 

and b coefficients are compared by measured densities and the results are given in Table 07. 
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     (17) 

 
Table 07 - Calculated and measured snow densities at three AWOS 

 JANUARY FEBRUARY MARCH 

 CALC. MEAS. CALC. MEAS. CALC. MEAS. 

GUZELYAYLA 0.25 0.25 0.27 0.27 0.30 0.30 

OVACIK 0.22 0.21 0.25 0.24 0.28 0.28 

CAT 0.28 0.30 0.28 0.30 0.30 0.32 

 

We searched a relationship between calculated grain sizes and measured densities in the form of 

Equation (18) keeping the power term to be 5 for each investigated month where grain size is measured 

in mm and density is in g/cm3. Calculated x and y coefficients and respective RMSE are presented in 

Table 08. 

yxd  5

0            (18) 

Table 08 - Calculated x and y coefficients for equation (18) 

Month x y RMSE 

JANUARY -0.04727 0.2797 0.04056 

FEBRUARY -0.03738 0.2871 0.04278 

MARCH -0.01711 0.3015 0.05037 

For every pixel, HUT model is run by assuming snow depth from 0.05 m to 1.00 m by 0.05 depth 

intervals in order to minimize sum of measured and modeled brightness temperature differences at 18.7 

GHz and 36.5 GHz vertical channels. During this stage snow grain size is dynamically calculated using 

Equation (16) with selected empirical coefficients and density is calculated by inserting obtained grain 

size to Equation (18). As a result the depth value which leads to smallest brightness temperature error is 

selected as that pixels depth value. Density of that particular pixel is also calculated by Equation (18). 

SWE of the pixel is assigned as multiplication of calculated snow depth and density. 
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4.3 Algorithms validation/heritage 

4.3.1 Flat and forested areas       [TKK] 

The algorithms and methods described above have been presented and tested in published peer-reviewed 

paper, Pulliainen 2006. The method was tested with SSM/I data in Northern Eurasia and in Canada, and 

with AMSR-E data in Finland. These tests indicate that in 62 % of the cases there was an improvement 

in the Snow depth estimate when used in Northern Eurasia in the period winter period from November 

1993 to April 1994. For Finland the improvement was from 50.2 % (February 2004) to 61.6 % 

(February 2005) of the cases. The results for the test site in Finland are summarized in Table 09. The 

described method was also tested semi-operatively in spring 2007 in Eurasia (Kärnä et al. 2007).  

The used emission model, HUT emission model, is published in Pulliainen et al. 1999. The emission 

model has been used by others too, for example in Canada, to retrieve snow water equivalent (Roy et al. 

2004). 
 

Table 09 - Quantitative performance of Snow depth and SWE retrieval for a Finnish test site when using interpolation of 
ground-based measurements and assimilation of satellite data to the interpolation result 

 RMSE (mm) Bias r
 2
 

 Snow depth 
Snow water 
equivalent 

Snow depth 
Snow water 
equivalent 

Snow depth 
Snow water 
equivalent 

February 2004, N = 99      

Interpolation 9.8 29.3 - 0.8 - 3.8 0.662 0.418 

Assimilation 8.9 28.2 0.4 - 1.3 0.696 0.431 

February 2005, N = 235      

Interpolation 13.3 35.9 1.0 - 2.7 0.648 0.578 

Assimilation 13.1 35.5 0.9 - 2.8 0.652 0.580 

4.3.2 Mountainous regions        [METU] 

All in-situ measurements conducted in between 2009 October to 2010 March period were compared 

individually with the corresponding 25x25 km2 AMSR-E footprint. For each measurement location the 

elevation of the weather station or ground measurement is compared against the AMSR-E pixel median 

elevation where the measurement falls inside it. If the elevation difference between measurement 

location and pixel elevation median value is greater than 400 meters that weather station or ground 

measurement is excluded from validation studies. Elevation range of ground truth data is from 981 

meters to 2937 meters. 

All the stations used in validation study measure only snow depth. In order to calculate snow water 

equivalent values for each station average seasonal snow density values were used. The resulting error 

summary plot of SWE with 148 measurements is shown in Fig. 12 and listed in Table 10. The RMSE of 

the study is 46.14 mm.  

It is obvious that error amount increases when SWE values measured are less than 75 mm and SWE 

values measured are higher than 175.0 mm. Sensor limitations prevent us to improve accuracy of 

product for SWE values higher than 150 mm but for SWE values less than 75 mm fine tuning of the 

algorithm can be considered. It should also be noted that only 3 measurements have been used during 

validation studies for SWE values less than 50 mm. A new approach considering pixel median elevation 

is planned to be used in order to modify validation results for SWE values less than 75mm where 

10GHz channels will be integrated. In this method, a threshold for pixel median elevation will be 

determined and below that value a new assimilation schema will be applied. For elevation values higher 

than specified threshold, existing algorithm will be used.  
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Table 10 - SWE Validation Study Results Summary for 2009 October-2010 March period 

Range Measured SWE Assimilated SWE Standard Deviation Measurement Mean Error 

mm mm mm mm Count mm 

0-50 46.77 106.67 11.03 3 59.90 

50-75 59.62 99.10 28.70 39 39.49 

75-100 86.35 103.78 25.89 32 17.43 

100-125 111.30 116.40 23.07 20 5.10 

125-150 134.75 96.00 25.70 19 38.75 

150-175 163.26 119.21 15.06 14 44.05 

175-200 187.15 119.92 9.89 12 67.23 

200-225 207.45 164.78 46.06 9 42.67 
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Fig. 12 - SWE Validation Study Results Summary Plot for 2009 October-2010 March period. 
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5. Merging products for flat/forested and mountainous areas 

5.1 Merging according the H-SAF mountain mask 

Although the products for flat/forested areas and for mountainous areas generated by FMI and TSMS 

cover the full H-SAF area, their quality differs in different areas, the product from FMI being tuned for 

flat/forested areas, that one from TSMS being tuned for mountainous areas.  However, a single product 

is distributed to the users, obtained by merging the two products in such a way that in flat/forested areas 

the FMI product is captured, and in mountainous areas the TSMS product is captured.  The distinction is 

determined by the “mountain mask” shown in Fig. 03, that was defined by METU. 

A mask based on digital elevation model (DEM) was used to separate the mountainous pixels from 

flat/forested areas. The merging algorithm finds the location of the non-mountainous pixels using this 

mask. As the spatial sampling of the product is sparse, some of the pixels have mixed case of 

mountainous and non-mountainous areas. For this reason, the mountain-fraction weighed average of the 

two SWE values is used. 

The flow chart for calculating the look-up table is shown in Fig. 13 and the merging procedure in Fig. 

14 (Ertürk 2009). 

 

 

Fig. 13 - Generation of look-up table for merging mountainous and non-mountainous products. 
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Fig. 14 - Flowchart of snow cover product merging. 

 

5.2 Comparison with the GlobSnow mask      [METU] 

[Note - At the SVRR (System Validation Results Review) on 22-23 February 2010 the Board noted that a 

new mountain mask has been defined in the framework of GlobSnow, an ESA project coordinated by 

FMI and participated by NR (Norwegian Computing Centre), ENVEO IT GmbH, GAMMA Remote 

Sensing AG, Finnish Environment Institute (SYKE), Environment Canada (EC) and Northern Research 

Institute (Norut).  The SVRR Board requested H-SAF to perform a comparison between the mountain 

mask adopted in H-SAF and that one defined by GlobSnow.  The study was performed by METU and is 

reported here below]. 

The HSAF and GlobSnow mountain masks have been compared and overlay analyses were made in 

order to depict the resemblances and differences of two mountain masks over the H-SAF domain (see 

Fig. 15). 
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Fig. 15 - The overlay map of HSAF and GlobSnow mountain masks over GTOPO DEM. 

At first glance, it could be observed that the common mountain area which is shown with red colour in 

the figure tells us that there is actually high aliasing between two masks, especially over higher 

elevations.  The resolution of the GlobSnow mountain mask is 25 km since it was formed as EASE Grid 

format and due to its coarse resolution GlobSnow mountain mask defines mountains with less detail and 

shows significant amount of mountains over shorelines and sea as well. Some closer views and 

statistical analyze results are given in Fig. 16, Fig. 17 and Fig. 18. 

 

 
Fig. 16 - Closer view of overlay map focusing Turkey. 
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Fig. 17 - Closer view of overlay map focusing Tatra and Carpathian Mountains. 

 

 
Fig. 18 - Closer view of overlay map focusing Alps. 

Statistical scores of the comparisons are reported in Table 11 and Fig. 19. 
 

Table 11 - Statistical results of overlay analysis with GTOPO DEM over Alps 

VALUE INHERIT PERCENT MEAN STD MEDIAN 

1 Only H-SAF 13 919 280 898 

2 Only GlobSnow 24 417 278 419 

3 Both 63 1500 626 1420 
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Fig. 19 - The mean values of 3 classes over Alps AOI. 

An additional overlay analysis have been applied in order to have an idea about frequency of mountain 

mask pixels according to elevation zones covering all of the H-SAF domain.  The results are given in 

tabular form in Table 12 and as chart in Fig. 20. 
 

Table 12 - Percentages of mountain mask pixels over elevation zones 

Elevation zones (m) Only H-SAF (%) Only GlobSnow (%) Both (%) 

0  0.03  21.48  0.08  

0-500  1.84  42.68  3.22  

500-1000  30.10  31.27  24.22  

1000-1500  57.23  3.23  36.19  

1500-2000  8.58  1.18  20.26  

2000-2500  1.92  0.17  10.81  

>2500  0.30  0.00  5.23  

Total  100  100  100  

 

 

Fig. 20 - The areal distribution of masks over elevation zones. 

As it can easily be observed from the figure that most of the pixels belonging to GlobSnow mountain 

mask are accumulated on lower elevation zones compared with H-SAF mountain mask.  Moreover, 

there is no contribution of GlobSnow mountain mask over 2000 m due to missing high plateaus. 

The figures given above analyzing two mountain masks with GTOPO DEM indicate the following 

additional facts. 

Regarding to Fig. 16 which gives a closer view to Turkey, it is seen that the blue colours are mostly 

covering the areas close to shorelines even extending the land boundaries and overlaps with sea as well.  

In addition to this, the yellow colours are mostly high plateaus and they are missed by GlobSnow 

mountain mask which only uses ”Slope > 2°” criteria while on the other hand the H-SAF mountain 

mask takes some additional parameters into account as it is given below: 
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"MEAN" ≥ 1000 m 

OR 

"STD_DEV"  ≥ 2 % AND "MEAN" ≥ 700 m 

OR 

"RANGE" ≥ 800 m AND "MEAN" ≥ 500 m 

Related with Fig. 17 that focuses on Tatra and Carpathian Mountains, it clearly shows that the hilly 

transitional areas are better covered with H-SAF mountain mask for Carpathian. 

Finally and most importantly, when Fig. 18 is considered it is easy to observe a big similarity between 

two maps over main Alps region. On the other hand, some neighbouring mountain areas which are 

indicated with orange ovals are missed by the GlobSnow mountain mask. While statistical analysis 

results showed that common mountain areas that has 63 % (red colour) areal coverage with respect to all 

pixels, has 1500 m mean elevation as expected with a std of 626 m. With the help of additional criteria 

inclusion in its algorithm, H-SAF mountain mask covers additional 13 % of mountain area which has 

919 m mean elevation and 280 m std. However, the blue pixels that are showing the mountain areas that 

only covered by GlobSnow mountain mask, are hard to be accepted as real mountain areas since they 

only have 417 m mean elevation and 218 std (also shown on Fig. 20). 

The overall recommendation is to keep H-SAF mountain mask for snow products generation. 
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6. Examples of snow water equivalent maps 

At the time of this writing, SN-OBS-4 is generated on a regular basis at FMI and TSMS.  An example of 

map generated by FMI, TSMS, and merged, is provided in Fig. 21. 
 

 
Processed product from FMI, optimised for flat and forested areas. 

 
Processed product from TSMS, optimised for mountainous areas. 

 
Merged product from FMI and TSMS. 

Fig. 21 - Snow water equivalent from EOS-Aqua AMSR-E - Time-composite maps over 24 hours, 18 March 2010. 
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