
Rome, 13-16/11/2018

Python for Dummies

Sebastian Hahn

Department of Geodesy and Geoinformation (GEO), TU Wien
http://www.geo.tuwien.ac.at/

Rome, 13-16/11/2018

Topics

• Introduction

• Development Environment

• Python Data Types

• Control Structures and Functions

• Summary

• Live Demo

2

Rome, 13-16/11/2018

INTRODUCTION TO PYTHON

Rome, 13-16/11/2018

Language overview

Central website: http://www.python.org/

• Created by Guido van Rossum and first released in 1991
• Python has a design philosophy that emphasizes code readability

– notably using significant whitespace

• General purpose
– can write anything from websites (Youtube, Reddit…) to scientific code

• High Level
– Strong abstraction from inner workings of the computer: e.g. no memory

management

• Interpreted
– executes instructions directly, no compilation

• Multi paradigm
– Object oriented, functional, imperative or procedural styles are supported

4

http://www.python.org/

Rome, 13-16/11/2018

Language overview

• Dynamically typed

– Variable types are checked during execution

• Modular

– Python modules must be imported to be used

• Multi Platform

– Works on Linux, Mac OS, Windows, …

• Batteries included

– Powerful standard library (e.g. file reading, URL parsing…)

5

Rome, 13-16/11/2018

Different Main Versions and
Implementations

• Currently Python 2.7 and 3.7 are the latest versions

– Python 2.7 will not be maintained past 2020

• https://docs.python.org/3/howto/pyporting.html

• Python 3 introduced some incompatible changes

– Nowadays, most 3rd party packages either work with Python 3 or both
versions.

• Reference implementation: CPython, download on python.org

• Others: IronPython, Jython, PyPy, Stackless Python,…

• Open Source

– Often, there are several packages available that serve the same goal

6

https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/howto/pyporting.html

Rome, 13-16/11/2018

Python Enhancement Proposals (PEPs)

• https://www.python.org/dev/peps/

– PEP001 PEP Purpose and Guidelines

– PEP004 Deprecation of Standard Modules

– PEP005 Guidelines for Language Evolution

– PEP006 Bug Fix Release

– PEP007 Style Guide for C Code

– PEP008 Style for Python Code

– PEP010 Voting Guidelines

– …

7

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0008/

Rome, 13-16/11/2018

DEVELOPMENT ENVIRONMENT

Rome, 13-16/11/2018

Development environment

• Theoretical minimum:

– Python installation

– Text editor

• Suggested IDE (Integrated Development Environment) for Win/Mac/Linux:

• Different versions: Professional (89€/year, free for students), Community
(free), Edu (free)

• https://www.jetbrains.com/pycharm/download/

9

https://www.jetbrains.com/pycharm/download/

Rome, 13-16/11/2018

Development environment

• Other IDE
– Spyder (written in Python)
– Pydev (Plugin for Eclipse)
– Pyscripter (Windows only)
– Komodo
– …

• IDE helps with

– Syntax highlighting
– Code refactoring
– Version control
– Debugging
– Code search
– …

10

Rome, 13-16/11/2018

Python installation

• Python 2.7/3.6 with Anaconda
– Available for Win/Mac/Linux

• Multiple installations of python on the same
computer (e.g. different versions, …)
 “environment”

• Two ways to install new packages and to create new environments:
– GUI (“Anaconda Navigator”)

– Command line (“Anaconda prompt”)

 conda create --name projektX python=2.7

 activate projectX

 conda install matplotlib

 deactivate

11

Rome, 13-16/11/2018

Miniconda installation

• wget https://repo.continuum.io/miniconda/Miniconda2-4.5.11-
Linux-x86_64.sh -O miniconda.shbash

• miniconda.sh -b -p $HOME/hsaf_conda

• export PATH="$HOME/hsaf_conda/bin:$PATH„

• conda create -n work_env -c conda-forge numpy scipy pandas
matplotlib rasterio geopandas netCDF4 pyflakes statsmodels
cartopy basemap basemap-data-hires cython h5py jupyter
pybufr-ecmwf pykdtree pygrib pyresample python=2

• source activate work_env

• pip install ascat pytesmo

12

https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash
https://repo.continuum.io/miniconda/Miniconda2-4.5.11-Linux-x86_64.sh -O miniconda.shbash

Rome, 13-16/11/2018

pip vs. conda

• The choice between pip and conda can be a confusing one, but the
essential difference between the two is this:
– pip installs python packages in any environment
– conda installs any package in conda environments

• If you already have a Python installation that you're using, then the choice
of which to use is easy:
– If you installed Python using Anaconda or Miniconda, then use conda to

install Python packages. If conda tells you the package you want doesn't
exist, then use pip (or try conda-forge, which has more packages available
than the default conda channel)

– If you installed Python any other way (from source, using pyenv,
virtualenv, etc.), then use pip to install Python packages

• Finally, because it often comes up, never use sudo pip install

13

Rome, 13-16/11/2018

PYCHARM IDE

Rome, 13-16/11/2018

Getting started with PyCharm

• pyCharm organizes code in “Projects”

• This whole class can be a project

• Anaconda creates a “root” environment by default

• pyCharm may select this automatically, otherwise it may be set at
File  Settings …  Project  Project Interpreter

• New packages can also be installed there
(however, the Anaconda Navigator is the suggested way)

• The environment can also be set for each file at
Run  Run configurations  Python interpreter

• To run the current file: Right-Click into the editor and press

• To run again: [Ctrl]+[F5], or

15

Rome, 13-16/11/2018

Debugging

• De-bug: remove bugs

• pyCharm: Instead of Run, press the Debug button

• Code will run like normal, until a breakpoint is encountered

– Set breakpoints by clicking left of code

– Remove by clicking again

• Before the line containing the breakpoint is evaluated, the
execution is halted and values of variables are shown

16

Rome, 13-16/11/2018

JUPYTER

Rome, 13-16/11/2018

Jupyter notebook

• Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code,
equations, visualizations and narrative text.

• http://jupyter.org/

18

http://jupyter.org/
http://jupyter.org/

Rome, 13-16/11/2018

PYTHON LANGUAGE
Data types, collections, control structures

Rome, 13-16/11/2018

Built-in primitive data types (immutable)

• Numeric types:

– Integers (“int”): -1, 0, 1, 2, 3, …

– Floats (“float”): -120.0, 3.141, 1.5e12, 3.00e8

– Complex (“complex”): 1.0j, 1+1j, 3e8+0j

• Binary types:

– Boolean (“bool”): True/False

• bool(0)  False; bool(1)  True

• bool("0")  True, bool("")  False

• String types:

– String (“str”): 'Hallo', "Hallo", "“

• NoneType
– x = None

20

Rome, 13-16/11/2018

Collections

• Collections can be used when we have more than one value

• Python provides the following collections built-in (more are in the
Collections package):
– Lists

• ordered

– Sets
• only unique entries are allowed

• unordered

– Tuples
• are immutable (cannot be changed)

• ordered

– Dictionaries
• pairs of key and value

• unordered (generally)

21

a_list = [1, 2, 3, 3, ‚four']

a_set = set(a_list)
>>> a_set
{‘four', 1, 2, 3}

a_tuple = (1, 2, 3, 3, ‚four')

a_dictionary = {
1: 'one',
2: 'two',
3: 'three',
4: 'four'
}

Rome, 13-16/11/2018

Accessing Collections

• Ordered Collections (not sets) can be accessed by index:
– a_list[2]  3 # python indices start with 0

• To change values of a collection, just overwrite the value:
– a_list[3] = 'three'

• This cannot be done with tuples:
– >>> a_tuple[2] = 'three'
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: 'tuple' object does not support item
assignment

• Add items to a list using .append(item):
– a_list.append(5)

• To combine two lists, add them together:
– b_list = [6,7,8]
– lists = a_list + b_list ->[1, 2, 3, 'three', 'four', 5, 6, 7,

8]

22

Rome, 13-16/11/2018

References in Python

• Imagine a list that contains other variables:
a = 2

b = 3

my_list = [a, b]

• What happens if you change a afterwards?
a = a + 1 # or a += 1

print(my_list)  [2, 3]

• This only works for immutable types (int, float, string, …). If we have
mutable types (e.g. lists, dicts, sets), we get a different behaviour:
list1 = [1, 2]

list2 = list1

list3 = [1, 2] # new list

list1.append(3)

list2  [1, 2, 3]

list3  [1, 2] # not changed

23

Rome, 13-16/11/2018

References in Python

• The use of id(..) helps to clear this up
a = 5
id(a)  1362872176
a += 1
id(a)  1362872208

my_list = [1,2,3]
id(my_list)  2188976983112
my_list.append(4)
id(my_list)  2188976983112

• Mutable types do not change id, immutable ones do!
• For reference:
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-
immutable/

24

https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/
https://codehabitude.com/2013/12/24/python-objects-mutable-vs-immutable/

Rome, 13-16/11/2018

Standard operators (Python as a calculator)

• Addition, Subtraction, Multiplication: +, -, *
• Exponentiation: a**b = ab

• Square root: a**(1/2)
• Division: Float vs. Integer division (New behaviour in python 3.x)

– 1 / 2  0.5
– 1 // 2  0
– 1.0 / 2.0  0.5
– 1.0 // 2.0  0.0

• % is the modulo operator: division remainder
– Useful to decide if a number is even or odd!

• in checks if a value is within a collection:
names = ['john', 'smith']
'john' in names  True

• Case sensitive!

25

Rome, 13-16/11/2018

Boolean operators

• == returns True if two variables have the same value

• != returns True if the do not have the same value

• >=, <=, <, > check for inequalities

• is returns True if the two variables refer to the same object (not a
copy)

– Careful! This leads to interesting results with immutables:

a = 10; b = 10

a is b  True

l1 = [10]

l2 = [10]

l1 is l2  False (but l1 == l2 True)

26

Rome, 13-16/11/2018

String formatting, list slicing

• Strings represent text

• Strings can be concatenated (stitched together) by + or +=:
my_string = 'Welcome'

my_string += ' to this class! '

• Line breaks can be represented as ' \n' (new line)

• Strings are lists of characters:
my_string[2]  ‘l’

• Strings (and lists) also support slicing:
my_string[start:stop:step=1]

my_string[0:1]  'W'

my_string[5:]  'me to this class!'

my_string[::2]  'Wloet hscas'

my_string[::-1]  '!ssalc siht ot emocleW’

my_string[:-5]  'Welcome to this c’

27

Rome, 13-16/11/2018

String formatting

• Strings have the .format() – Function which allows to pass variables of other types

• For this, the string must contain {}-Braces at the positions

name1 = “John"

name2 = "Doe"
"Hello, {} {}!".format(name1, name2)

• Alternatively, the string may contain %-Characters and a % (value1, value2, …) at
the end (this is the old way to do it)

"Hello, %s %s" % (name1, name2)

• Or prepend the string with “f” and put the variables to print directly into the
placeholders:

f”Hello {name1} {name2}!”

• Or pass the arguments by name, or use the indices to access them

"Hello, {first} {last}".format(first=name1, last=name2)
"Hello, {0} {1}!".format(name1, name2)

• For a full reference, see: https://pyformat.info/

28

https://pyformat.info/

Rome, 13-16/11/2018

String formatting

• When converting values (float, integer, …) to string, additional options may
be given:

• Padding adds spaces left and/or right of the value (useful for tables):

 "{:10}".format("Hi.")  'Hi. '
 "{:>10}".format("Hi.")  ' Hi.'

 "{:^10}".format("Hi.")  ' Hi. '

• Print numbers with a certain precision:

 "{:5.3f}".format(3.14159265)  '3.142'
 (5 digits total, 3 after the comma)

• Leading zeros are possible:

 "{:06.1f}".format(3.14159265)  '0003.1'

• Integers can be converted; with or without leading sign

 "{:03d}".format(42)  '042'

 "{:+03d}".format(42)  '+42'

29

Rome, 13-16/11/2018

CONTROL STRUCTURES AND
FUNCTIONS

Rome, 13-16/11/2018

Conditional statements

• General idea: Do something only if something else is true.
if condition:

 statement1

 statement2

 ...

• Indentation is optional in many programming languages, but not in
python!

• Suggested indentation: 4 spaces

• Block ends, where indentation ends, e.g.
a = 2

a += 1

if a == 3:

 print("increasing a by 1")

 a += 1

print(a)

31

„Block“

Execute anyway

Execute only if the value of a is equal to 3

Execute anyway

Rome, 13-16/11/2018

if / elif / else

• An if-Statement may contain multiple elif and one else-Block:
if condition1:

 do something

elif condition2:

 do something else

elif ...

 ...

else:

 do something if none of the other cases have occurred

• This prevents long lists of if-Statements

32

Rome, 13-16/11/2018

pass

• When writing a program, some options are left for later implementation

• Python needs an indented block after every if/elif/else-Line

• Use pass as a placeholder. pass does nothing:
if a > 0:

 print("a is bigger than zero")

elif a == 0:

 print("a is zero")

else:

 pass # we'll do that later

– This is also useful if you want to have clearer conditional expressions:
if type(a) == str or type(a) == int:

 pass

else:

 print("A is neither a string nor an integer!")

• „Readability counts.“ - import this (Easter Egg)

33

Rome, 13-16/11/2018

Simplifying conditions on collections

• Sometimes it is useful to know if (at least) one element of a list
converts to True, or if all of them convert to True.

• For example, check if there is a number 0 in the list:
a_list = [-1, 0, 1, 2, 3]

if all(a_list):

 pass

else:

 print("There is a zero somewhere")

if any(a_list):

 print("There is at least one non-zero element in the list")

• Checking general expressions on list items involves list
comprehension
(taught in two weeks). For reference:
if any(val > 2 for val in a_list):

 print("There is at least one value larger than 2 in the list")

34

Rome, 13-16/11/2018

Loops

• Code can be carried out multiple times using loops

• 2 types of loops: while and for

• while-loops:

– Execute a code block until a requirement (boolean expression) is no longer
met

– Typically used when the number of iterations is not clear beforehand

• for-loops:

– Execute a code block for a specific number of times

– This number is usually known in advance

– Alternatively: Execute a code block for every element of a list (or any
iterable)

– python for-Loops are always „foreach“-loops!

35

Rome, 13-16/11/2018

for - loop

• We want to add up the numbers in the list (without using sum()):
nums = [-1, 0, 1, 2, 3]

num_sum = 0

for current_number in nums:

 num_sum += current_number

• The range function creates a generator (for now: like a list)
containing whole numbers:
range(start, stop, step=1)

range(stop)

range(5)  [0,1,2,3,4]

range(5,7)  [5,6]

range(5,10,2)  [5,7,9]

• Use range for creating indices in loops:
for i in range(10):

 print(i)

36

Rome, 13-16/11/2018

for loops on dictionaries

• With dictionaries, it is possible to loop over key and value
simultaneously:
a_dict = {1: 'one', 2: 'two', 3: 'three'}

for (key, val) in a_dict.items():

 print("The word for {} is {}.".format(key, val))

• Loop over keys:
for key in a_dict: # or: a_dict.keys()

 pass

• Loop over values:
for val in a_dict.values():

 pass

37

Rome, 13-16/11/2018

while - loop

• Similar to if-Statements, while-Loops have a boolean expression:
while expression:

 do something

• The loop is carried out as long as expression evaluates to True

• Example: Find n prime numbers:
n = 10

curr_num = 1

curr_count = 0

while curr_count < n:

 if is_prime(curr_num):

 print(curr_num)

 curr_count += 1

 curr_num += 1

38

Rome, 13-16/11/2018

Loops: break and continue

• When a loop should be terminated, use break

• To skip the current iteration and proceed with the next, use
continue

• Example for break:
name = „John"

for c in name:

 if c == 'h':

 break

 print(c)

• Example for continue:
for c in name:

 if c == 'h':

 continue

 print(c)

39

J
o

J
o
n

Rome, 13-16/11/2018

Loops: break and else

• Else can be used to check if a break-Statement has terminated the
loop

• Let‘s find some primes:

for n in range(2, 8):

 for x in range(2, n):

 if n % x == 0:

 print(n, 'equals', x, '*', n / x)

 break # breaks out of (ends) current loop

 else:

 # loop fell through without finding a factor

 print(n, 'is a prime number')

40

Rome, 13-16/11/2018

Changing list items while iterating them

• Be careful when trying to change list items while iterating them:
– If the items are immutable, they are passed by value and cannot be

changed
– If they are mutable (e.g. lists), they are passed by reference

list1 = [1,2,3]
list2 = [[1], [2], [3]]

for item in list1:
 item += 1 # list1 remains unchanged

for item in list2:
 item.append(item[0]) # list2 is changed

 list2  [[1, 1], [2, 2], [3, 3]]

41

Rome, 13-16/11/2018

Functions

• A function is a piece of code that can be used multiple times
– can have input and output, both optional

• Functions are declared using def
def function_name(arg1, arg2, arg3=default_value, ...):
 do something
 return value

• Parameters with defaults must come after those without!
• You can run the function in the „normal“ code

a_value = function_name(input1, input2, input3)
a_value = function_name(input1, arg3=input3, arg2=input2)
a_value = function_name(arg3=input3, arg2=input2,
arg1=input1)
a_value = function_name(input1, input2)
a_value = function_name(arg1=input1, input2, input3)

• Keyword arguments (kwargs) always come after positional arguments!

42

Rome, 13-16/11/2018

Function examples

• Example for a function to return the median value of three
(pairwise different) values:
def median(first, second, third):
 itemlist = [first, second, third]
 itemlist.sort()
 return itemlist[1]

print(median(9.23, 1, 2))

• Functions have to be defined before they can be used

• When manipulating items within a function, remember:
– Mutable types get passed by reference (and can be changed within

the function)

– Immutable types get passed by value (changes within the function will
not reflect outwards)

43

Rome, 13-16/11/2018

Function - *args

• We might want to have a function take an arbitrary amount of
arguments (median of n values)

• The special syntax *args collects all arguments in a tuple called
„args“
def median(*args):
 items = list(args)
 items.sort()
 return items[len(items)//2]

print(median(9.23, 1, 2, 2, 2, 2, 2))

• You can also combine „normal“ arguments and the argument list
def quantile(quant, *args):

 items = list(args)

 items.sort()

 return items[int(quant * len(items))]

44

Rome, 13-16/11/2018

Using *args in function calls

• The use of *args is also possible „the other way round“

• E.g. when we want to use a list for a couple of parameters:
def add2numbers(number1, number2):

 return number1+number2

numbers = [5, 6]

expands to add2numbers(numbers[0], numbers[1]

add2numbers(*numbers)

• For Geo-Applications very useful when handling (3D) Points:
– function(x, y, z) vs. function(p) with p = [x, y, z]

45

Rome, 13-16/11/2018

Function - **kwargs

• It‘s also possible to get arguments as a dictionary

• **kwargs (keyword arguments)

• In this context, get(key, default) is a useful function on dictionaries

– If the key is in the dict, return the value, otherwise return the default

def a_function(**kwargs):

 x_coord = kwargs.get('x', 0.0)

 y_coord = kwargs.get('y', 0.0)

 z_coord = kwargs.get('z', 0.0)

• This can also be used „the other way round“, e.g. for string formatting

lecturer = {'first': 'John', 'last': 'Smith'}

"Hello, {first} {last}!".format(**lecturer)

46

Rome, 13-16/11/2018

3RD PARTY LIBRARIES

Rome, 13-16/11/2018

Important/helpful 3rd party libraries

• numpy - fundamental package for scientific computing with Python containing among
other things: a powerful N-dimensional array object

• scipy - Includes modules for graphics and plotting, optimization, integration, special
functions, signal and image processing, genetic algorithms, ODE solvers, and other

• pandas - Python Data Analysis Library
• matplotlib - Production quality output in a wide variety of formats
• basemap - Plotting maps (development stops in 2020)
• cartopy - designed for geospatial data processing in order to produce maps and other

geospatial data analyses.
• Geopandas - working with geospatial data, combines the capabilities of pandas and

shapely
• Rasterio - provides access to geospatial raster data

• dask - provides advanced parallelism for analytics
• xarray - N-D labled arrays and datasets
• scikit-learn - Machine learning in Python
• statsmodels - provides many opportunities for statistical data analysis
• Many more: Plotly, Bookeh, seaborn, scrapy

48

http://www.numpy.org/
http://www.scipy.org/
https://pandas.pydata.org/
http://https/matplotlib.org/
https/matplotlib.org/
https://matplotlib.org/basemap/
https://scitools.org.uk/cartopy/docs/latest/
http://geopandas.org/
https://rasterio.readthedocs.io/en/latest/
https://dask.org/
https://dask.org/
http://xarray.pydata.org/en/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://www.statsmodels.org/

Rome, 13-16/11/2018

SUMMARY

Rome, 13-16/11/2018

Where to go from here?

• Many online tutorials and books
– https://docs.python.org/3/tutorial/

– https://www.tutorialspoint.com/python/

– https://www.learnpython.org/

– https://wiki.python.org/moin/PythonBooks

– https://docs.python-guide.org/intro/learning/

– https://www.youtube.com/results?search_query=python

• Got a Python problem or question?
– Check the Python FAQs, with answers to many common, general

Python questions.

– Stackoverflow

– Google

50

https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
https://www.tutorialspoint.com/python/
https://www.tutorialspoint.com/python/
https://www.learnpython.org/
https://www.learnpython.org/
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
https://docs.python-guide.org/intro/learning/
https://docs.python-guide.org/intro/learning/
https://docs.python-guide.org/intro/learning/
https://docs.python-guide.org/intro/learning/
https://www.youtube.com/results?search_query=python
https://www.youtube.com/results?search_query=python
https://docs.python.org/3/faq/index.html
https://stackoverflow.com/
https://stackoverflow.com/

Rome, 13-16/11/2018

Version control

• Version control is a system that records
changes

– Local Version Control Systems (Copies)

– Centralized Version Control Systems
(CVS, Subversion, …)

– Distributed Version Control Systems
(Git, Mercurial, …)

• Git – book

– Since its birth in 2005, Git has evolved
and matured to be easy to use and yet
retain these initial qualities.

• Speed, simple design, fully distributed,
non-linear development, able to
handle large projects

51

https://git-scm.com/book/en/v2

