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1 Executive summary 

The Algorithm Theoretical Baseline Document (ATBD) provides a detailed description of the 
algorithm used to estimate rainfall from soil moisture (SM) data and to merge it with Passive 
Microwave (PMW) rainfall estimates. SM2RAIN (Brocca et al., 2013) is an algorithm which inverts 
the soil water balance equation to estimate rainfall. The algorithm is here applied to ASCAT SM 
observations (H SAF products H16 and H101) to obtain H101- and H16-based rainfall estimates 
which are then merged with the PMW-only H23 product (Marra et al., 2015, Panegrossi et al 
2014, 2016, Ciabatta et al., 2017). The algorithm is implemented in the MATLAB programming 
language. 

2 Introduction 

2.1 Purpose of the document 

This ATBD is intended to provide a detailed description of the scientific background and 
theoretical justification for the algorithm used to obtain the merged product. 

2.2 Related H SAF products 

H64 product is based both on surface SM products (H16, H101 and their successors) and on MW-
based daily rainfall estimates (H23). For further information on the SM parent products and 
retrieval algorithm, the user is referred to the respective ATBDs [ATBD, 2016]. H23 is an auxiliary 
product which provides daily precipitation estimates by combining PMW precipitation rate 
estimates derived from conical and cross-track scanning radiometers. Specifically, H23 is based 
on merged MW precipitation rate estimates provided by H01, and H02B (Mugnai et al., 2013, 
Casella et al., 2013, Sanò et al., 2013). H23 will be replaced by H67 when operational, which will 
incorporate also precipitation rate estimates provided by H18 (Sanò et al., 2015), and by the 
auxiliary modules H-AUX-17 (Casella et al., 2017), and H-AUX-20 (Sanò et al., 2016). Further 
information about these two products can be found in the respective ATBDs [ATBD, 2013a and 
ATBD, 2013b]. The H23 algorithm is based on two modules: 

1. remapping module; 
2. ensemble mean module; 

 
The remapping module performs bilinear interpolation of the instantaneous precipitation rate in 
the original orbital (irregular) grid to remap them on a regular 0.25°x0.25° grid.  
The ensemble mean module runs every day at 06 UTC and performs an ensemble mean of all the 
remapped rainfall rate estimates produced from H01 and H02B in the previous day. 
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2.3 State-of-the-art 

It is well known that satellite PMW retrievals provide reliable estimates of rainfall and represent 
a valuable tool to develop hydrological applications over scarcely instrumented areas. However, 
the satellite rainfall estimates suffer from different errors (Ebert et al. 2007). The retrieval is 
impacted by issues in the estimation of light rainfall that cause a general underestimation of the 
total amount of water and by the indirect nature of measurement that is based on the interaction 
of radiation with the hydrometeors (Kidd and Levizzani, 2011). Due to the instantaneous nature 
of measurement, the quality and reliability of the estimates rely also on the number of satellite 
observations contributing in the rainfall estimation. In this respect, the use of constellation of 
sensors can mitigate this issue (Skofronick-Jackson et al., 2017, Panegrossi et al., 2016, Panegrossi 
et al., 2019).  
By following a completely different approach, SM2RAIN estimates rainfall starting from SM 
variations observed by a satellite sensor within a soil layer. The method has been applied to 
different satellite SM products with satisfactorily results (Brocca et al., 2014; Koster et al., 2016; 
Ciabatta et al., 2018; Massari et al., 2017). Moreover, the integration between SM2RAIN-derived 
and classical rainfall products was found to provide more reliable data (Ciabatta et al., 2015, 2017; 
Brocca et al., 2016; Tarpanelli et al., 2017) that can be used also for flood modelling (Massari et 
al., 2014; Ciabatta et al., 2016; Camici et al., 2018) and landslides forecasting (Brunetti et al., 
2018). 

3 Input data 

As stated above, H64 product exploits two different satellite retrieval approaches. The classical 
top-down approach in which satellites sense clouds from above and the bottom-up approach 
which is based on SM2RAIN. The two are merged to produce the final rainfall product.  

4 Architecture of the product generation chain 

The architecture of the H64 product generation chain is shown in Figure 1 and consists of two 
modules: 
 

1. Rainfall estimation via SM2RAIN; 
2. Integration module; 
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Figure 1 - Architecture of H64 product generation chain 

 

4.1 Rainfall estimation through SM2RAIN 

4.1.1 Soil moisture data preprocessing 

Before applying SM2RAIN to H16 and H101 SM data, some preprocessing steps are carried out. 
The H64 algorithm collects all the BUFR files available for the day before the modelling chain run. 
To do this, all the Product Dissemination Units (PDUs) provided every 3 minutes through MetOp 
A and B platforms are collected. Then, the swath data are co-located over a 12.5 km grid (the 
same used for ASCAT Climate Data Record products). In order to reduce the number of spatial 
and temporal gaps, data provided as H16 and H101 are merged. In case of two coincident SM 
observations, the average of the two observations is computed. Despite the use of two different 
SM products, some “holes” can be noticed in the daily composite obtained after every model run, 
as displayed in Figure 2. 
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Figure 2 – H101 Soil Moisture data available over the full disk area for the 20th of November 
2018 (left panel), H16 Soil Moisture data available or the same day (central panel) and the Soil 

Moisture Daily Composite obtained by merging the two SM products (right panel). 

 
As it can be observed from Figure 2, both H101 and H16 SM products show blank areas where no 
retrieval is carried out due to the orbit geometry. These holes are still present in the daily 
composite but they show reduced areas. For these areas, no rainfall estimation is carried out 
during the current day.  
After these preliminary operations, the H64 algorithm executes the following preprocessing 
steps: 

 all the SM data characterized by a probability of snow at ground or frozen soil higher than 
30% are masked out and not used, as these particular conditions can negatively impact 
the quality of the satellite retrieval; 

 all the SM data available in the seven days preceding the algorithm run are collected and 
collocated over the same 12.5 km grid in order to reduce data gaps by interpolating the 
SM data at 00:00 UTC; 

 the merged observations obtained through the preprocessing steps are then added to the 
datapool created during the previous operation and interpolated in time at 12:00 UTC and 
21:00 UTC. The two interpolations allow to provide rainfall estimation with a latency as 
short as possible, two different product configurations are provided. The first one uses all 
the data in the time window 00:00-12:00 UTC of each day (early run), whereas the second 
one in the time window 00:00-21:00 UTC (late run). In this way, rainfall estimates are 
available about 2 hours after the last considered satellite soil moisture overpass, i.e. 
around 14:00 UTC and around 23:00 UTC); 

 once the data are added to the datapool, SM observations older than eight days (with 
respect to the current day), are removed from the ancillary data collection. It is worth 
noting that in this phase there is no data masking nor flagging. 
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Due to the limited number of MetOp A and B satellite observations used in the early run, the 
estimation of rainfall via SM2RAIN is not be possible over a high fraction of the MSG full-disk area. 
Therefore, the product provided by the algorithm run at 12:00 UTC (early run) is characterized by 
a lower quality and is not recommended for applications which do not require very short latency 
observations.  
Figure 3 shows the spatial cumulated coverage of MetOp A and B data over the MSG Full-disk 
area at different temporal interval. 
 

 
Figure 3 – Spatial coverage obtained by considering all the available MetOp A and B overpasses 

until 09:00 UTC (upper-left), until 12:00 UTC (upper-right), until 18:00 UTC (bottom-left) and 
until 21:00 UTC (bottom-right) for a randomly selected day. 

4.1.2 The SM2RAIN algorithm 

Brocca et al. (2013) proposed an algorithm, namely SM2RAIN, that allows to estimate the amount 
of rainfall fallen into the soil through soil moisture (SM) observations. The algorithm is based on 
the inversion of the soil water balance equation: 

 
𝑍∗𝑑𝑠(𝑡)/𝑑𝑡 = 𝑝(𝑡) − 𝑟(𝑡) − 𝑒(𝑡) − 𝑔(𝑡) (1) 
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where Z* is the soil water capacity (soil depth times soil porosity), s(t) is the relative saturation of 
the soil or relative SM, t is the time and p(t), r(t), e(t) and g(t) are the precipitation, surface runoff, 
evapotranspiration and drainage rates, respectively. In particular, the drainage rate is calculated 
by the relationship proposed by Famiglietti and Wood (1994): 

 
𝑔(𝑡) = 𝑎𝑠(𝑡)𝑏 (2) 
 

where a and b are two parameters describing the nonlinearity between the soil saturation and 
drainage rate (Brocca et al., 2013). It is assumed that during rainfall the evapotranspiration rate 
and the surface runoff are negligible (Brocca et al., 2015). Under these assumptions, solving Eq. 
(1) for precipitation ends up with the following explicit equation: 

 
𝑝(𝑡) = 𝑍∗𝑑𝑠(𝑡)/𝑑𝑡 + 𝑎𝑠(𝑡)𝑏 (3) 
 

In summary, once two consecutive observations of SM are available, Eq. (3) is able to provide an 
estimate of the rainfall fallen during the time step dt. 
In order to reduce the effect of noise in the estimated precipitation, an exponential filter was first 
applied to SM retrievals. As described in Albergel et al. (2008), the filter requires a single 
parameter, the characteristic time length (T), to be calibrated. In the original formulation, the 
exponential filter allows to estimate the root-zone soil moisture conditions of a deeper layer 
starting from surface observations. The T-value takes into account all the factors affecting the 
temporal variability of soil moisture, e.g. hydraulic properties, evaporation, and soil layer 
thickness. The use of such a filter on one hand increases the considered soil layer thickness, thus 
affecting Z* parameter, while, on the other hand, reduces the noises contained in the surface SM 
time series. The T-values, along with the SM2RAIN parameters a, b and Z* are estimated within 
the calibration step against a rainfall dataset. The algorithm has been applied successfully on a 
local (Brocca et al., 2013; 2015), regional (Ciabatta et al., 2015; 2017) and on a global scale (Brocca 
et al., 2014, Ciabatta et al., 2018, Koster et al., 2016, Massari et al., 2017) to different SM data 
with good results. 

4.1.3 SM2RAIN-based rainfall estimate 

The data obtained from the previous preprocessing steps are ready to be used for rainfall 
estimation through SM2RAIN. The four SM2RAIN parameter values are obtained through 
calibration. Due to the need of carrying out a rigorous calibration, the parameter values are 
calibrated by using the H113 SM Data Record product as input. This choice allowed us to perform 
a long-term calibration during the period 2013-2017 on a global scale, without spatial and/or 
temporal gaps. The calibration has been carried out by minimizing the daily Root Mean Square 
Error (RMSE) against ERA5 rainfall product (Dee et al., 2011). The calibration has been carried out 
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on a pixel by pixel basis over the H113 grid (12.5 km). It is worth noting that despite ASCAT SM 
moisture product is available since 2007, in this application SM2RAIN has been calibrated with 
the data obtained from the two orbiting platforms (MetOp A and B). In this respect, a new 
SM2RAIN calibration is foreseen when data of MetOp C will be used for rainfall estimation. On 
the other hand, when MetOp A will stop working, there will be the need of a new calibration. It 
was decided to use ERA5 as it is a widely used product and it is considered as a high-quality 
dataset. Other products (like GPCC or GPM) have not been chosen for the following reasons: 

1) GPCC uses ground stations to provide a 1° dataset. While it could be considered of high 
quality over well instrumented areas, it may fail over regions characterized by a very low 
gauge density (Massari et al., 2020), and it spatial resolutions is much coarser than ASCAT 
resolution; 

2) GPM provides the users with 3 different products. The Final run uses gauge data to correct 
satellite estimates, showing the same limitations of ground-based datasets, while the use 
of satellite-based only rainfall data could introduce additional error in SM2RAIN-derived 
data as they are characterized by significant uncertainty (please refer to Massari et al. 
(2020) for a discussion about the best benchmark dataset to use). Moreover, GPM Dual 
Polarization Radar data can be used to validate H SAF products over area characterized by 
the absence of ground monitoring network, where the classical validation approach 
(direct comparison with raingauges and ground radars) it is not possible; 

Regarding the limitations of reanalysis datasets (like ERA5) it can be said that they often may fail 
in representing the variability of convective systems, due to the relatively low resolution and lack 
of proper parameterization of sub-grid processes (Massari et al., 2020). In the study ERA5, GPCC 
and a GPM product have been assess through a Triple Collocation (TC) analysis on a global scale 
during a 4-year period. The analysis showed that ERA5 performed the best, even if it has been 
underlined higher uncertainties over convective systems. The main findings in terms of 
correlation coefficient are reported in Table 1. 
 

 A B C 

GPCC 0.71 0.71 0.70 

ERA 5 - 0.81 0.83 

IMERG 0.67 0.66 - 

SM2RAIN-ASCAT 0.70 - 0.68 

Table 1 – Median correlation coefficients obtained through TC analysis for the considered triplets 
(A, B and C). 

 
This preliminary analysis confirmed the use of ERA  5 as calibration benchmark. For further details 
about the analysis and the spatial distribution of the performance, the readers are referred to 
Massari et al. (2020). 
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Besides these results, in Brocca et al. (2019) the impact of the calibration benchmark selection 
has been evaluated. In that analysis, SM2RAIN algorithm has been applied to 20000 random 
satellite pixels. The algorithm parameters have been calibrated against GPCC and ERA 5 to assess 
the impact of benchmark selection. The analysis showed that the estimated rainfall in the two 
calibration tests is very similar, with very high correlation coefficients between the two SM2RAIN-
derived data records (median value higher than 0.90). This result clearly demonstrates that the 
selection of the reference dataset has a small influence on SM2RAIN-derived rainfall that is mostly 
driven from soil moisture temporal fluctuations. For further details about the calibration strategy 
and SM2RAIN output performance, the readers are referred to Brocca et al. (2019). 
 
Figure 4 shows the spatial distribution of the 4 parameters obtained after the calibration step. 
The spatial patterns are in good agreement with the physiographic features of the ground. Z* 
parameter shows higher values in those areas characterized by a more intense rainfall regime, 
whereas a and b show higher values in areas characterized by higher impact of drainage (like 
sandy soils). T is higher where the signal is more impacted by noise. 
 

 
 

Figure 4 – Z* (upper left panel), a (upper right panel), b (bottom left panel) and T (bottom right 
panel) SM2RAIN parameters spatial distribution within the study area 
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4.2 Integration module 

Once rainfall is estimated via SM2RAIN according to the procedure described above, the obtained 
data are resampled over a 0.25°x0.25° regular grid in order to allow the integration with H23.  
The regridding is carried out through the application of a simple average of the closest native 12.5 
km 8 pixels (inherited from ASCAT grid) to each 0.25° grid points. 
After the regridding procedure, SM2RAIN-derived rainfall and H23 data are finally merged. The 
integration is carried out through a simple linear weighted average between the two products 
through the following equation: 
 
𝑃𝐻64 = 𝑃𝐻23 ∗ (1 −𝑊) + 𝑃𝑆𝑀2𝑅𝐴𝐼𝑁 ∗ (𝑊) (4) 
 
Where 𝑃𝐻64 is the integrated rainfall, 𝑃𝐻23 and 𝑃𝑆𝑀2𝑅𝐴𝐼𝑁 are the rainfall amounts obtained 
through H23 and SM2RAIN respectively, 𝑊 is the weight used to integrate the two products. 
More in details, 𝑊 ranges between 1 (only SM2RAIN estimates are used to build H64) and 0 (only 
H23 rainfall data are used to build H64). 
The 𝑊 values have been calibrated on a pixel by pixel basis using the following equation: 
 

𝑊 =
𝜎2∗(𝜌1𝑅−𝜌12∗𝜌2𝑅)

𝜎1∗(𝜌2𝑅−𝜌12∗𝜌1𝑅)+𝜎2∗(𝜌1𝑅−𝜌12∗𝜌2𝑅)
 (5) 

 
Where 𝜎 and 𝜌 are the standard deviation and the Pearson’s correlation coefficient of the two 
parent products (H23 and SM2RAIN-derived rainfall) and the benchmark. In this case the 
calibration of the weights has been carried out against ERA5 during the period 2011-2014. The 
use of eq. 5 should limit the impact of using the same calibration dataset, ERA5, for estimating 
the integration weights. Moreover, the impact of the calibration dataset should be limited. In 
Brocca et al., 2020, the use of two different calibration benchmarks was tested showing that the 
differences between the two obtained datasets were negligible, suggesting a limited impact of 
the calibration benchmark. The spatial distribution of the integration weights over land is 
displayed in Figure 5. 
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Figure 5 – Spatial distribution of the integration weights used for the merging of H23 and 

SM2RAIN-derived rainfall. 
 
As it can be observed in Figure 5, the integration weights are lower (more weight given to H23) 
where SM input data are characterized by a lower quality (over deserts, tropical forests, high 
latitudes). In the current version of the algorithm the integration weights are static in time but it 
is foreseen to adopt a dynamic merging technique as soon as a longer data period can be used 
for calibration. This will allow to define weights varying as function of vegetation or seasons. As 
stated above, SM2RAIN is able to retrieve rainfall only over land and thus, rainfall over oceans is 
provided only by H23. This aspect can create some artifacts in rainfall estimation due to the use 
of a single product offshore (H23) whereas, on coast pixels, the estimated rainfall is the outcome 
of the integration scheme. In order to avoid high differences at the water/land interface, all the 
coastal pixels are characterized by an integration weight smaller than the calibrated one: 
 

𝑊𝑐𝑜𝑎𝑠𝑡 =
𝑊

2
 (6) 
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At the same time, a buffer zone of 0.25° (one pixel) is created between coasts and oceans. The 
buffer zone is used to define integration weights even smaller than the coastal ones: 
 
𝑊𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑊/4 (7) 

 
The spatial distribution of coastal and buffer pixels is reported in Figure 6. 

 
Figure 6 – Land/ocean/coast mask used to create the buffer zone along the coastline. 

 
Figure 7 shows an example of the rainfall integration for the H64 product generation. Moreover, 
over the blank areas identified by the “diamonds” in Figure 3, no integration is carried out and 
only rainfall estimates obtained through H23 are used to generate H64. At the edge of these 
areas, the same weighting factor adjustment has been applied.  
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Figure 7 – Example of rainfall generation (in mm/d) through SM2RAIN (left panel), H23 rainfall 

estimates (middle panel) and H64 integrated rainfall product (right panel). 

4.3 Output files 

The H64 product is provided in NetCDF format. Each output file contains latitude, longitude, daily 
rainfall and an integration flag showing which product has been used for obtaining the final 
estimate. 
More in details, each file is characterized by: 

 nlat: 540 (Number of 0.25° grid intervals of latitude from 75° N to 60° S). 

 nlon: 480 (Number of 0.25° grid intervals of longitude from 60°W to 60°E).  
 

Variable definitions: 
 

 Rainfall: daily precipitation in mm 

 Integration flag: shows which product has been used for the integration according to Table 
. 

 
The general format of output file names is the following: 
h64_ <Date>.<Extension>  where 

 
i. Date contains a four-digit year, a two-digit month, and a two-digit day (YYYYMMDD); 
ii. Extension is nc (NetCDF 4). 
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Example: 
h64_20151214.nc 
 

 

Flag Value Products used for H64 generation 

0 H23 and SM2RAIN-derived rainfall 

1 H23 only 

2 SM2RAIN only 

3 No available data 

Table 2 - Integration flag definition 

 
It is worth noting that all international agencies delivering operational PMW precipitation 
products in terms of both Level 2 (orbital) and Level 3 (gridded daily or monthly) products. The 
advantage of delivering a Level 3 PMW daily precipitation product within H-SAF is twofold: 
 

1. the gridded product can be well exploited for hydrological applications and for data 
assimilation in hydrological models; 

2. the product can be easily compared to global rainfall gridded datasets (i.e., GPCP) and to 
similar PMW Level 3 daily (and monthly) estimates provided by other international 
agencies (i.e., NASA with GPROF Level 3 daily and monthly mean at 0.25°x0.25° 
resolutions, or NOAA MiRS Level 3 products). 

5 Applications and evaluation of H64 product 

H64 daily rainfall product, taking advantage of the integration between the bottom-up and top-
down approaches, provides valuable and reliable estimates that can be used with benefit for 
hydrological applications. The integration between top-down and bottom-up approaches has 
been already tested and assessed in Italy (Ciabatta et al., 2017). In this study a prototype version 
of H64 has been created by merging a satellite microwave precipitation product and SM2RAIN-
derived rainfall. Then the product has been evaluated against observed data in Italy with very 
satisfactorily results, in terms of Correlation coefficient (R) and Root Mean Square Error (RMSE). 
The main findings of that study are summarized in Figure 8. As it can be observed, the integration 
provides a strong improvement both in terms of R and RMSE with respect to the parent products 
alone. 
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Figure 8 – R (upper panel) and RMSE maps (lower panel) obtained by comparing H23 product 

(right), SM2RAIN-derived rainfall (middle) and the combination of the two products (left). 
 
Recently, H64 has been tested also as input for flood modelling. Here an application of H64 as 
input for flood modelling is briefly presented and discussed. This analysis has been carried out 
over 720 basins in Europe with area ranging between 200 to 160000 km2 during the period 2011-
2014. The H64 rainfall data are used to force the MISDc rainfall-runoff model (Brocca et al., 2011) 
in order to simulate discharge. The performances are evaluated in terms of Kling-Gupta 
Efficiency Index (KGE) against observed discharge data, KGE has a perfect score of 1, while values 
lower than 0 highlight unsatisfactory model results. KGE is defined as: 
 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

                                                                           (7) 

 
where 𝑟 is the linear correlation between simulated (𝑠𝑖𝑚) and observed (𝑜𝑏𝑠) data, 𝜎 is the 
standard deviation and 𝜇 is the mean of the simulated and observed discharge values. 
In order to assess the results provided by H64, the analysis has been carried out also by forcing 
the model with a ground-based dataset (EOBS, Cornes et al., 2018), and with a state-of-the-art 
satellite rainfall product (TMPA, Huffman et al., 2007) and by considering H23 parent product 
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alone. Results in terms of KGE are displayed in Figure 9. As it can be noticed, H64 rainfall 
estimates provided very good results over the analyzed catchments. The integration provided a 
high improvement with respect of H23, especially in Central Europe and Spain. H64 provided 
better results than those obtained by forcing the model with TMPA data, almost over all the 
analysis domain, confirming the added value of integrating multiple sources of information. The 
skill of reproducing observed discharge is very close to the ground-based dataset EOBS. This 
aspect is of paramount importance as H64 could be released with a small latency, providing a 
reliable rainfall dataset that can be used for operational hydrological applications. 
 

 
Figure 9 – Hydrological validation carried out over the European area by considering EOBS (A), 

TMPA (B), H23 (C) and H64 (D). the results are expressed in terms of KGE. 
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