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1. Introduction 

The precipitation is one of the most important components of the hydrological cycle and the driving force for 

severe flood events: consequently, the accuracy of flood forecasting is linked to the accuracy of the 

precipitation estimation. In hydrological models, the rainfall patterns strongly impact the runoff calculation 

because the relationship between rainfall distribution and computed discharge is nonlinear (e.g., Goodrich et 

al.; 1997, Singh, 1997; Cristiano et al, 2017). 

For hydrological operational activity, hydrological models are usually forced with observed and predicted 

rainfall data, and the uncertainty of hydrological forecasts is strongly related to the uncertainty of the rain field 

estimates of atmospheric forecasting models. It is very important to force hydrological models with realistic 

observed precipitation data, which are fundamental to the spin-up process, to reduce this uncertainty. The rain 

gauge data are used as the main information (Nikolopoulos et al., 2010), even if rainfall spatial pattern from 

rain gauges is affected by errors, depending on data scarcity, sparse sensor network, associated to the lack of 

a robust or redundant infrastructure, able to guarantee data transmission and functionality during a severe 

weather event. Indeed, rain gauges can be considered as the most accurate sensors for measurements over a 

limited area (nearly a point), but their small coverage (especially over complex terrain and tropical regions) 

limits the adequacy in representing the spatial structure of highly variable rainfall fields over large spatial 

scales: therefore, rain gauges data could be considered a local information, discontinuous over time and 

especially in space. Moreover, the global decline of rainfall networks over time has proved to be 

disadvantageous; this has led researchers to consider the use of satellite-derived rainfall estimates (SRFE). 

During the time, there has been significant development in space-based precipitation estimation very important 

in hydrological applications. Satellite sensors offer unique advantages compared to gauges and weather radars 

because they provide a global coverage and observations in regions where in situ data are inexistent or sparse. 

Because of this uniqueness, the use of satellite data for hydrologic applications has gained growing interest 

(Guetter et al., 1996; Tsintikidis et al. 1999; Wilk et al., 2006; Hughes, 2006; Su et al., 2008; Collischonn et 

al.;2008; Thieming et al. 2013; Jiang and Wang, 2019; Darko et al. 2021).  

Dembélé et al. (2020) highlight that although satellite products are characterized by uncertainties, their most 

reliable key feature is the representation of spatial patterns, which is a unique and relevant source of 

information for distributed hydrological models. Their results demonstrate that there are benefits in using 

satellite data sets, when suitably integrated in a robust model parametrization scheme. Shi et al. (2020) suggest 

that simulation results of the hydrological model using an appropriate method for merging rainfall data can 

provide valuable spatially distributed precipitation. Several techniques have been proposed to merge different 

sets of data and reduce uncertainties in rainfall estimation. Main used techniques are based on a physical 

approach or statistical algorithms (e.g., French & Krajewski, 1994, Todini, 2001).  

Anyway, the assimilation and downscaling of precipitation data from different sources involves a deep 

understanding of the source of the observations, its characteristics and its limits. 

The precipitation data are characterized by complex patterns and by a high spatial variability, which increases 

in a complex orography: consequently, the information provided by the different observations can help to 
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adequately reproduce this complexity. The main aim of this work is to present a method of generating a 

synthesis of a discrete set of point rain gauge observations and a satellite derived rainfall product, focusing on 

small-medium scale river basins.  

Another goal of this work is also to assess if using the combination of rain gauges data and MW/IR H03 

product and MW-only precipitation product H68 could overcome the specific lack of information provided 

by in situ measurements, useful for defining the local rainfall amounts and intensity. These data sources could 

be used to obtain a mutual correction of the implicit error characteristic of the different data.  
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2. Preliminary Analysis 

Cetemps Hydrological Operational activity is divided in 7 sub-domains, each domain runs at different spatial 

resolution based on the area characteristics and computational time. Daily operational activity over Italy is 

available at link: http://cetemps.aquila.infn.it/chym/newoper/ 

Three different basins have been selected for this study (Fig.1): 

a) The Po River Basin (upper drainage network) is an international watershed and the largest Italian: its 

surface extends for about 74 000 km2, of which about 71 000 km2 across the Italian territory, which 

means a quarter of the entire national territory; it is the main Italian river also for length, 652 km. The 

Po, whose headwaters are on the northern slope of Monviso in Piedmont, is fed by 141 tributaries 

along its course. The complexity of Po River basin is highlighted by significantly different 

hydrological behaviors and ecosystems that coexist and coevolve. The Po River Basin Authority has 

identified 12 different fluvial regimes which depend on the spatial distribution of rainfall over the 

catchment. In the northwestern part of Italy's Piedmont region, the Tanaro River is the most significant 

right-side tributary to the Po in terms of length, 276km, size of drainage basin, 8.324 km2 (partly 

Alpine, partly Apennine), and an average flow discharge of 123 m3/s. It is a river that flows eastward 

across northern Italy starting from Monte Saccarello (2201 m), Ligurian Alps, near the border with 

France. 

b) The Tevere River Basin is the second longest Italian river after the Po, rising on the slope of Monte 

Fumaiolo, a major summit of the Tosco-Emiliano Apennines. It is 405 km long. Twisting in a generally 

southerly direction through a series of scenic gorges and broad valleys, the Tiber is the fourth river for 

outflows and the third for length and contributes, for about 20%, to the fluvial inputs in the Tyrrhenian 

Sea. Its catchment area covers an area of 17375 km2, equal to about 5% of the national territory 

c) Volturno River Basin is in the south-central Italy. It rises in the Abruzzese Apennines near Alfedena 

and flows southeast as far as its junction with the Calore River near Caiazzo. It then turns southwest, 

past Capua, to enter the Tyrrhenian Sea at Castel Volturno, northwest of Naples. The river is 175 km 

long and has a drainage basin of 5450 km2. 

Their main settings and characteristics are reported in the Table. 1. 
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Figure 1. Selected River basins over Italian Peninsula. @Google Earth 

 

 

Table 1. Main hydrological model simulation settings and characteristics: NLON and NLAT are the grid point numbers; 

SLON and SLAT are the first latitude and latitude, located on the south-est  

Domain Basin Station 
Basin 

Drainage 
Area (km2) 

Estimated 
Drainage 

Area (km2) 
SLAT; SLON NLONXNLAT 

Spatial 
resolution 

(m) 

01 Po 

Isola S. Antonio 25640 25641 

✓ 44.10 
✓ 6.50 

330X280 860 

Alba -Tanaro 8175 8121 

02 Tevere 

Pierantonio 1953 1913 
✓ 41.71 
✓ 11.59 

740X470 291 

Ponte Felcino 2087 2123 

03 Volturno 

Benevento - Calore   

✓ 40.50 
✓ 13.60 

400X400 441 

Solopaca - Calore 2966 3130 

 

In this work, the hourly rain gauge record data are provided from Dewetra Platform (Italian Civil Protection 

Department and CIMA Research Foundation, 2014; https://www.cimafoundation.org/fondazioni/ricerca-

sviluppo/my-dewetra.html). 

The precipitation (frequency, intensity, type, and quantity) is a key variable for specifying the state of the 

climate system. It varies considerably in space and time and requires a high-density network to observe its 

variability and extremes. A network of rain gauges represents a finite number of sample point of the two-

dimensional pattern of precipitation depths. 
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Figure 2. Three different selected river basins: a) Upper Po River Basin; b) Tevere River Basin; c) Volturno River 

Basin. The left panels represent the considered basins and the station localizations; the right panels show the rebuilt 

domains by the model. @Google Earth. 

 

The accuracy of areal estimation depends on both the total number of gauges and their spatial distribution and 

a minimum density standard for constructing precipitation gauge networks is established (Sevruk, 1992; 

WMO, 1994).  

The minimum density of a rain gauge network depends on a series of factors including the temporal resolution 

of the precipitation measurements and the morphological characteristics of the region considered. For these 
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reasons, WMO has established a minimum density standard for the construction of precipitation measurement 

networks as reported in Liang et al., 2012. The optimal spatial density of the monitoring stations can vary from 

one station every 100 km2 for the lowland areas to one station every 50 km2 for the hill and mountain areas. 

However, these considerations are not general; they change with the morphological complexity of the territory, 

the local environmental conditions, and the micro-climatic variability. The size and duration of the different 

characteristics of the precipitation areas go up to the very small convection cell in which the rain field is 

considered nominally uniform. A relationship between the size of the precipitation phenomena and the spacing 

between them has been observed and these regularities characterize the horizontal structure of the precipitation. 

Any precipitation event has an effective radius of influence for any considered area, which reflects the 

influence of a rain bandwidth (e. g. Duque-Gardeazábal et al., 2018).  

Generally, an area of influence is assigned to each rain gauge in the network assuming that the precipitation 

field does not vary within the defined radius. The rain gauge is in the center of its circular area of influence of 

radius, R, defined as the radius of influence of the rain gauge. 

In Shi et al. (2020) is reported that this radius of influence is not larger than a certain distance since the rain 

bandwidth in most regions are within 10–50 km. Based on this assumption, the mean distance between 

available station has been computed as: 

 

𝐿 =  √
𝑆

𝑁
                                                                             (1) 

 

where L is the mean distance between stations; S is the considered area and N is the number of rain gauges. 

All the defined domains are divided into three territorial sectors: mountain (h> 700 m), hilly (300 m < h < 700 

m) and flat (h< 300 m) area and it is possible to calculate the average rain gauge distance for each sector (see 

Table 2). Obviously, it should be considered that having carried out 5-year long hydrological simulations, the 

rain gauge numbers change over time on the same domain. 

 

Table 2. Density of a rain gauge network over selected domain. 

Domain Basin 
Domain 
Number 

raingauge 

RG N° on 
Basin 

Mean 
Distance  

Mountain area  Hilly area Flat Area 

L (km) N L (km) N L (km) N L (km) 

01 Po Up to 460 Up to 280 9.7 162 8.5 78 8.9 46 12.8 

02 Tevere Up to 393 Up to 207 9.5 36 11 75 9.8 96 7.7 

03 Volturno Up to 229 Up to 56 11 10 13 10 10 21 9.9 
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3. Precipitation Data Assimilation 

Precipitation data are characterized by large spatial and temporal variability: the rainfall patterns play an 

important role in runoff estimation due to the strong nonlinear relationship between rainfall distribution and 

river discharge. 

The accuracy of results of many hydrological computations depends on the accuracy of Areal Precipitation 

Estimates (APE, see Nemec,1986). The methods of APE are subject to various errors which considerably 

restrict our ability to model hydrological processes. However, obtaining the true amount of precipitation, P, 

over an area using conventional measurement techniques is almost impossible. For elements showing a large 

spatial variability in each time interval, for example hourly or daily values of P, the crucial aspect of the 

conventional technique is the design of the network and the resulting sampling error. This implies the solutions 

to such important issues as the number and location of gauges and the representativeness of a point value of P 

under the given physical conditions of an area. The general theory of this problem has been presented by 

Gandin (1970). In this context, it is important to recognize that regional, national, and private networks of 

gauges are generally not distributed to satisfy the specific requirements of the hydrologist or conditions of a 

particular basin. 

This shows that the applicability of conventional APE methods for hydrological purposes depends on the 

systematic and random errors of punctual measurements of precipitation, P, and on the representativeness of 

the punctual values of P. The solution to these problems is mandatory, especially in small mountainous basins. 

Furthermore, it often happens that the spatial sampling of the rain gauge monitoring network does not respect 

a minimum density standard established by the WMO, as in the case of Italy. In the areas where rain gauges 

are very limited or even absent, an improvement using modern remote-sensing techniques such as radar, 

satellite imagery is essential. Without the usage of satellite rainfall estimation, the uncertainty of rainfall 

estimation could approach infinite in a sparse area. Instead, the auxiliary information of the remote-sensing 

data is used to bound the uncertainty of the blended rainfall estimation in such areas, although it is generally 

considered large. Given a selected domain, CHYM application rebuilds hourly precipitation areal at 

hydrological scale for hydrological simulation (Coppola et al, 2007), which depends on the spatial distribution 

of the available data. The model estimates a preliminary rainfall field, that we define as the Precipitation 

Background Field (PBF), to speed-up the numerical processing. All cells of the lattice are initialized with a 

value calculated with Cressman algorithm (Cressman, 1959), a nonparametric kernel smoothing interpolation 

method. Because of its simplicity, the Cressman method can be a useful starting tool (Bouttier and Courtier, 

1999). The method does not rely on the stationarity assumption and can be applied to the cases where geo-

statistical assumptions are violated. In the literature, the merging methods based on Cressman objective 

analysis scheme is considered a direct merging (e.g., Pereira Filho et al., 1998; Goudenhoofdt and Delobbe, 

2008). However, the direct merging produces a significant bias around the areal boundary (i.e., the boundary 

between two consecutive grids of data) caused by the discontinuity of background field (i.e., gridded data). 

According to Li and Shao (2010), the accuracy of the merged field is depending upon the used kernel function, 

K, as in the case of the Cressman algorithm: 
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𝐾(𝑢) = 𝑐
1−𝑢2

1+ 𝑢2 𝐼{|𝑢| ≤ 1}                                                                (2) 

 

where c is a constant chosen to satisfy the requirement ∫ 𝐾(𝑢)𝑑𝑢 = 1, the kernel. 

This is an example of a nonparametric regression model which uses a kernel function to weight surrounding 

observations by distance. In addition to defining a kernel function, it is also necessary to select a rain radius of 

influence that reflects the rain bandwidth defined by the climatology of the area and the number of local rain 

data available. The radius of influence, R, rescales the spread of kernel function and determines the smoothness 

of the estimated field.  

It is intuitive that a small radius leads to a rough estimate field (small bias, large variance), and a large Radius 

creates a smooth surface (large bias, small variance).  

Based on these considerations, given a discontinuous background field, the rainfall for each grid point of the 

selected domain can be calculated as follows 

 

𝑃𝑖 =  ∑
1− (𝑟𝑖𝑗 𝑅⁄ )

2

1+ (𝑟𝑖𝑗 𝑅⁄ )
2𝑗 𝑃𝑗                                                                     (3) 

 

where Pi is the estimated rain value, Pj is the rainfall measurement available within a radius, R, and rij are the 

distances between for example, rain gauge locations and the cell. Obviously, the first difficulty lies in selecting 

the reasonable value of R. 

Indeed, even if observations are available at any points of the grid and no error is assumed, the rain field rebuilt 

by the direct merging method is going to produce large boundary bias: smaller value of R means the bias occurs 

in a smaller area around the boundary. However, R selection is not a remedy to the boundary bias because the 

rain bandwidth is likely to be large when observed points are distributed irregularly. The problem of boundary 

bias is caused by the fact that the background field is discontinuous due to discretization of the field, but the 

nonparametric merging method is only able to generate continuous surfaces.  

A smoothed merging idea to reduce the boundary bias arising from merging gridded and point data, based on 

the double smoothing estimation: pseudo-observations are produced by coarse interpolation; the final estimate 

is carried out using both original and pseudo-observations (Li and Shao, 2010; Duque-Gardeazábal et al., 

2018). The basic idea used in this work is the same, although the technique changes. To improve performance 

of the assimilation of Satellite data and possible quantitative efficiency in the presence of sparse gauge stations 

we implemented, in the hydrological model Cellular Automata algorithm (Coppola et al, 2007), a technique 

able to interpolate the value of a random field. According to Cellular Automata theory, a CHyM grid is 

considered an aggregate of cellular automata and the status of a cell corresponds to the value of a CHyM 

precipitation field. The status si of the generic cell i of the lattice is updated according to following rule:  

 

𝑠𝑖 =  𝑠𝑖 +  𝛼(∑ 𝛽𝑗(𝑠𝑗 − 𝑠𝑖)8
𝑖=1 )                                                                 (4) 
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where 𝑠𝑖 is carried out over all 8 surrounding cells. The coefficients 𝛽𝑗 allow to consider the different distances 

between the cells, as an example for a regular equally spaced lattice, they assume the value 1 for the cells in 

North, East, South and West location, and the value 1 √2⁄  the cells located in the North-East, North-West, 

South-East and South-West direction respect to the cell i-th. The coefficient 𝛼 assumes a small value (typically 

from 0.1 to 0.9) to ensure a slight smoothing of the original matrix: this smoothing rule is performed several 

times until stable status is reached, and all cells are updated synchronously. The grid point associated with the 

rainfall value available in the considered database is not modified by the algorithm. 

In details, a regular lattice, with sites where each of them takes N possible values, is updated in discrete time 

steps according to the previous rule that depends on the status of the site and on the eight neighbouring cells. 

The cellular automata method allows to perform a downscaling of the rain field, useful for the high resolutions 

needed by hydrological simulations and allows to use different sources of precipitation data.  

In this preliminary analysis, the modular approach has been used: the different data sets are assimilated using 

a hierarchical sequence of modules; in this way it is possible to consider the different nature of the data. 

Therefore, the lattice of the considered domain can be divided into as many subdomains as the available data 

sources. Each subdomain can be defined as a set of grid points that have at least one rainfall value in a selected 

R, where it has a typical value of a few kilometres, depending on the density of the available data: tree different 

radius of influence has been selected for this work, with different coverage of the rain gauge data compared to 

the satellite data. Using the cellular automata technique, this study aims to identify how input data settings 

affect model performance, if merging rain gauge and satellite data improves hydrological outputs. 

 

4. Software development 

To this study, CETEMPS bought a new server machine for a better computational performances and reliability 

(Server HPE Proliant DL560; 4 processors Intel Xeon-Gold 6252N @2.3GHz (24-core); 512 GB RAM DDR4 

2933 MHz). All the data were converted from GRIB to NetCDF format, using a the pygrib2nc python 2.0 

script, developed in this project by CNR ISAC. A new script has been developed from scratch in python 3.8 

which is the python version installed on the new server for operative purposes, because available tools are 

developed in python 2.0 and therefore are incompatible with 3.8, as also suggested by the python community. 

Then, the NetCDF output files have been furtherly converted into a proprietary binary format compatible with 

the hydrological model, using another ad-hoc tool, developed in Fortran, able to generate the binary data. Once 

all the tools have been debugged and finalized, annual file data at hourly resolution (hsafrainYEAR.dat) have 

been generated and ported into our database. 

It must be stressed out, along all the 5 years of data processed, about 5% of the hourly matrices are not available 

in the database for H03B data, nevertheless more are missing in H68. Because of this, a new subroutine has 

been developed into the CHyM libraries (hsafrain) able to recall the file from the archive and read the correct 

hourly matrix (Fig. 3, 4). 
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Figure 3. Source code of the fortran subroutine added to the CHyM libraries to recall the file from the archive and 

read the correct hourly matrix. 
 

 
Figure 4. List of assimilated data into CHyM Code 

 

Moreover, into the model main script a safety check is performed on the availability of the H SAF data before 

to run the cell-automata procedures. This check is needed for the merging of the GAUGE-SAT data when a 

different radius of influence, R, is forced to the model, since a coverage of the grid point of the matrix must be 

guaranteed even if a satellite data would not be available (Fig. 4). 

 
Figure 5. Source code of the check routine for the merging of the GAUGE-SAT data when a different Radius of 

Influence is force to the model. 
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5. Hydrological Evaluation 

One of the effective strategies for the validation of satellite data is an indirect method through a hydrological 

assessment. The main critical issue in this method is the presence of the anthropic impact on the considered 

area, such as the highly regulated basins that increase the difficulty in hydrological modelling because 

simulations reproduce the natural flow discharge of rivers and data on artificial water management are not 

available. A preliminary analysis of both natural and anthropogenic characteristics of the basin and a selection 

of the hydrological period to be simulated should be a mandatory approach for the evaluation of the Satellite 

Precipitation Product. The indirect validation method is based on the ability to reproduce the observed 

streamflow, where the hydrological model has been forced with satellite product. the idea is to find the optimal 

source of observed data to rebuild a realistic rain areal and to do this a comparison and sensitivity study is 

carried out where, in addition to forcing the hydrological model with only rain gauge or satellite data, it is also 

tested a possible combination of them. 

5.1. CETEMPS Hydrological Model (CHyM) 

The Cetemps Hydrological Model (Coppola et al., 2007, Verdecchia et al., 2008b) has been applied for 

climatological studies to investigate the effects of Climate Changes on the hydrological cycle (Coppola et al., 

2014, Sangelantoni et al., 2019). The model mainly has been developed and used as an operational tool for 

early warning system (Tomassetti et al., 2005; Ferretti et al., 2019; Colaiuda et al., 2020; Lombardi et al., 

2021).  

CHyM is a fully distributed, physical-based hydrological model, where hydrological processes (surface runoff, 

infiltration, evapotranspiration, percolation, melting and return flow) are explicitly simulated by a physical 

based numerical scheme. Cellular Automata (CA) based algorithm has been developed and implemented in 

the CHyM code. This native algorithm allows the model to simulate the hydrological cycle on any geographic 

domain, with any spatial resolution up to DEM resolution (90 meters in the current version). The lower limit 

in choosing the spatial resolution deals with the validity of the numerical schemes used to simulate the 

hydrological processes (e.g.: the kinematic wave of shallow water, which used to solve the continuity equation, 

is considered a good approximation with a horizontal resolution of few hundreds of meters). Furthermore, the 

CA algorithm can acquire different data sources or rebuilt the spatial distribution of precipitation on a 

hydrological scale. 

 

5.2. Simulated Flow Discharge 

In this study, the hydrological simulation is stands from 1st January 2015 to 31st December 2019: 1826 days, 

43824 hours. For the simulations, no calibration was done and neither melting component nor the anthropic 

impact are considered. This condition could affect the estimate of the baseflow discharge. Obviously, this is 

to the detriment of the analysis as the scores are influenced by a systematic error due to a baseflow not well 

reproduced. However, this method does not affect the conclusions as the purpose of the work is not to validate 
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the performance of the hydrological model but to establish whether the performance improves based on the 

rain scenarios with which the model is forced. In detail, this report shows the workflow and results relating to 

three different domains (Fig. 2) selected on the Italian territory (Table. 4). For each domain, hydrographic 

basins have been identified for which the observed data are available, useful for the analyzes. Long time series 

of observed flow discharge data have been made available by the CIMA Foundation1. 

Furthermore, a hydrographic basin has been identified, the Tanaro river, a right tributary of Po River, for which 

different flood periods have been selected. Four case studies were selected, linked to four different flow peaks 

(Table. 7); once the time of maximum peak was identified, a 120-hour time series containing it was selected, 

trying to avoid time series with NO DATA (-9999.0). Anyway, if some value of -9999.0 is present, this is 

adjusted thanks to Cellular Automata technique, using the previous and next value.  

In this report, the results about four different hydrological simulations were reported: 5 different used rain 

input settings for DOMAIN01 and 4 for DOMAIN02 and DOMAIN03 (Table. 3), based on data assimilation 

of: 

 

✓ Rain gauge data: Dewetra Platform (every hour). 

✓ H SAF Product: MW/IR H03B product (mm/h at 5 km spatial resolution and 15 min temporal 

resolution). 

✓ H SAF Product: H SAF MW-only precipitation products H68 (mm/h at 27.7 km spatial resolution and 

30 min temporal resolution). 

 

Table. 3. Rain input settings 

 DATA 
NAME 

SIMULATION 

GAUGE RADIUS 

(km) 

SAT RADIUS 

(km) 

1 Rain Gauge GAUGE 35 X 

2 MW/IR H03B SATH03B X 5 

3 Gauge + MW/IR H03B G3SATH03B 3 5 

4 Gauge + MW/IR H03B G5SATH03B 5 5 

5 
MW-only precipitation 

products H68 SATH68 
X 28 

 

In any case, even when the hydrological model is forced with satellite data only, if these are not available, the 

model uses rain gauge data with a default radius of influence. 

Table 4 shows the results related to the size of the surface covered by the rain gauge data according to the use 

of the two selected radiuses of influence: 5 km and 3 km. The use of two radiuses is aimed at a sensitivity 

analysis. For example, in the case of the mountain area of the Po basin, this area covers 44% of the entire Po 

 
1 https://www.cimafoundation.org/ 
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basin. Regarding this area, 71% coverage of the rain gauge data is expected if the used radius of influence is 

equal to 5 km and 19% if the radius of influence is equal to 3 km.  

The distribution and density of the rain gauge data, also as a function of the radius of influence, are shown in 

fig. 6, for DOMAIN01. 

 

Table. 4. Percentage of Covered Surface size by the rain gauge data. 

Domain Basin Covered Basin 
Area % 

Montain area  Hilly area Flat area 

  R = 5 km R = 3 km Area% R = 5 km R = 3 km Area% R = 5 km R = 3 km  Area% R = 5 km R = 3 km  

01 Po 0.56 0.15 0.44 0.71 0.19 0.23 0.77 0.19 0.33 0.39 0.09 

02 Tevere 0.57 0.24 0.30 0.45 0.14 0.39 0.64 0.27 0.31 0.80 0.33 

03 Volturno 0.40 0.19 0.27 0.29 0.15 0.18 0.42 0.27 0.16 0.52 0.19 

 

 

  

Figure 6. DOMAIN01: distribution and density of the rain gauge. The coverage rain gauge data (blue area) is a function 

of the radius of influence: left panel, RADIUS = 3 km; right panel, RADIUS = 5 km. Red area represents the Satellite 

data coverage.  

 

5.3. Objective Quality Scores 

To evaluate the fit between observed and simulated stream flow time series, the objective functions are selected 

(Table. 5). The traditional performance indicators have been used, such as the Nash–Sutcliffe Efficiency (Nash 

and Sutcliffe, 1970), percentage bias (PBIAS) measuring the average tendency of the simulated values to be 

larger or smaller than the observed ones. The optimal value of PBIAS is 0.0, with low-magnitude values 

indicating accurate model simulation. Furthermore, the following scores were considered: Root Mean Square 

Error (RMSE); Mean Absolute Relative Error (MARE) is sensitive to extreme values (i.e., outliers) and to low 

values; Original Kling-Gupta Efficiency (KGE, Gupta et al., 2009), Modified Kling-Gupta Efficiency 
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(kgeprime, Kling et al., 2012), Non-Parametric Kling-Gupta Efficiency (kgenp, Pool et al., 2012). According 

Mathevet et al. (2006), KGE and NSE can be calculated in a bounded version: Bounded Nash-Sutcliffe 

Efficiency (nse_c2m), Bounded Original Kling-Gupta Efficiency (kge_c2m), Bounded Modified Kling-Gupta 

Efficiency (kgeprime_c2m), Bounded Non-Parametric Kling-Gupta Efficiency (kgenp_c2m). The analysis is 

carried out using an open-source evaluator for streamflow time series in Python (Hallouin, 2019). In addition 

to the conventional scores, other indicators were selected to obtain a more objective analysis, independent of 

the limits of the scores commonly used for hydrological analyses, for a total of 17 quality scores (Table. 5). 

 

          Table. 5. Quality scores 

QUALITY SCORES 
1 Nash-Sutcliffe Efficiency nse 
2 Original Kling-Gupta Efficiency kge 
3 Modified Kling-Gupta Efficiency kgeprime 
4 Non-Parametric Kling-Gupta Efficiency kgenp 
5 Root Mean square Error RMSE 

6 Mean Absolute Relative Error MARE 

7 Percent Bias PBIAS 
8 Bounded Nash-Sutcliffe Efficiency nse_c2m 
9 Bounded Original Kling-Gupta Efficiency kge_c2m 

10 Bounded Modified Kling-Gupta Efficiency kgeprime_c2m 
11 Bounded Non-Parametric Kling-Gupta Efficiency kgenp_c2m 

12 Match Correlation MC 
13 Correlation Time Delay CT_D 
14 Time Peak Delay TP_D 
15 ERROR % ER% 
16 Dynamic Time Warping DTW 
17 Derivative Dynamic Time Warping DDTW 

 

The idea is to consider the river flow discharge profile as a signal and for this reason, indicators, commonly 

used in generic signal studies, have been used. 

The Match Correlation (MC) is the relationship between the Auto-correlation curve and the Cross-Correlation 

curve (Observe VS Simulate) and allows to understand the two curves overlap: the best value obtained will be 

close to 1.  

 

MC =  
∫ AutoCorrelation_of_Observed_values

∫ CrossCorrelation_of_Index_values_VS_Observed_values
                                          (5) 

 

The cross correlation (CC) is typically used in the signal theory (Rabiner and Gold, 1975; Rabiner and Schafer, 

1978; Benesty et al., 2004), for the assessment of similarity between two signals.  
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The Correlation Time Delay (CT_D, Lombardi et al., 2021) represents the value of time lag L that maximizes 

the product obtained in CC estimation. CT_D represents an estimation of time shift between two series; 

therefore, the score is to be suitable to measure the effectiveness of the signal given by the hydrological 

simulations. 

The Time Peak Delay (TP_D) is a timing score and represents the hourly delay of the estimated maximum 

peak flow discharge compared to the observed one.  

The percentage Error (E%) at the peak value of the flow discharge was calculated as follows: 

 

max
 

 𝐷𝑆𝑖𝑚− max
 

 𝐷𝑂𝑏𝑠

max
 

 𝐷𝑂𝑏𝑠
                                                                    (6) 

 

where Dsim indicates the simulated flow discharge and DObs represents the observed flow discharge peak. 

The Dynamic Time Warping (DTW, Berndt and Clifford, 1994; Keogh and Ratanamahatana, 2005; Maier-

Gerber et al., 2019 and Di Muzio et al., 2019) find the similarity between two sequences based on the "warping" 

the time axis of one (or both) sequences, to achieve a better alignment. Given two discrete series x(i) and y(j) 

of N and M components respectively, an N-by-M matrix is built. Each element V(i,j) represents the Euclidean 

distance between the i-th element of the first sequence and j-th element of the second sequence (Fig. 7). For 

this matrix, a “warping” path W is defined as a contiguous set of L matrix elements, and the measure of 

misalignment d for the path W is given by: 

 

𝑑(𝑊) =
∑ 𝑉(𝑖,𝑗)𝑖,𝑗
1

2
𝐿(𝐿−1)

                                                                           (7) 

 

where the sum in the numerator is carried out over all the elements belonging to the warping path W. The 

denominator is used to normalize different length sequences. The DTW index is then calculated as the 

minimum value of d(W), considering all the possible path W. 

 

𝐷𝑇𝑊 = min  
𝑊

𝑑(𝑊)                                                                       (8) 

 

For instance, if the two considered sequences are aligned and have the same number of components (N=M), 

the optimal path will be the N diagonal elements of matrix V.  
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Figure. 7. DTW score related to CS02 (02/05/18 00 - 06/05/18 23) G5SATH03B hydrological simulation at Alba 

Station, Tanaro River. 

 

The DTW has been successfully used, anyway it may lead to wrong results; as an example, the technique may 

fail in finding the optimal alignment because a feature (i.e., peak, or local minimum) in one sequence is higher 

or lower than its corresponding feature in the other sequence. 

To overcome this problem, Keogh and Pazzani (2001) proposed the computation of warping using the local 

derivative of the time series to be compared and called this algorithm “Derivative Dynamic Time Warping” 

(DDTW). 

The DDTW algorithm implementation replaces the data time series with their first derivative and the Euclidean 

distance is measured on them (Fig. 8). The first derivative has been calculated for each time series as follows 

 

𝐷(𝑥[𝑖]) =
(𝑥[𝑖]−𝑥[𝑖−1])+((𝑥[𝑖+1]−𝑥[𝑖−1])/2

2
                                                         (9) 

 

The main limitation linked to both analyses are defined singularities (Sakoe, & Chiba 1978; Keogh and 

Pazzani, 2001), i.e., the algorithm may try to explain variability in the Y-axis by warping the X-axis. This can 
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lead to unintuitive alignments where a single point on one time series maps onto a large subsection of another 

time series.  

To overcome those limits, we used the Windowing method (Berndt and Clifford, 1994). Allowable elements 

of the matrix can be restricted to those that fall into a warping window according to the follow equation: 

 

|𝑖 − (𝑛 (𝑚 𝑗))⁄⁄ | < 𝑅𝑎                                                                           (10) 

 

where Ra is a positive integer window width. In this work, Ra is equal to 10 and this allows us to mitigate the 

effects of the baseflow discharge that the model does not accurately reproduce, due to anthropic impact or for 

example melting effect. 

 

 
Figure. 8. DDTW score related to CS02 (02/05/18 00 - 06/05/18 23) G5SAT hydrological simulation at Alba Station, 

Tanaro River. 

 

 

 



20 
 

6. Results 

According to the project supervisors, it was decided to use five-year long hydrological simulations for each 

domain and for each identified scenario. The analysis is carried out on 4 years of data, since the first year 

serves as a spin up of the model. The main limits in the hydrological assessment are also linked to the quality 

of the flow discharge observed data. Figure 9 shows the time series of two consecutive stations in the basin of 

the Calore river, a tributary of the Volturno river. The time series released by the Benevento station on the 

Calore river shows several significant peaks not evident in the next Solopaca station. In this circumstance, it 

seems reasonable to consider those peak values as a measurement error and therefore they have been removed. 

This circumstance was also highlighted in the other used series, but in other cases it is not so evident: 

insignificant peaks recorded at the previous sensor not found in the next one. In this case, it was decided not 

to filter the data, but to overcome these limitations, two long observed time series have been used on the same 

basin to reduce the uncertainty associated with the observed data (Table. 1).  

 

 

Figure 9. Observed flow discharge time series in the Calore basin (Volturno) relating to two consecutive 

measurement stations, Benevento and Solopaca, from January 1, 2017, to March 15, 2017.  

 

A second strategy was to use different quality scores, up to 17 which should give more objective information 

on the results of the analyzes. A traditional metric used in hydrology to summarize model performance is, for 

example, the Nash-Sutcliffe Efficiency (NSE) or the Kling-Gupta Efficiency (KGE). A score value = 0 

corresponds to using the mean flow as a benchmark predictor: negative values are often viewed in the literature 

as bad model performance and positive values are seen as good model performance. However, the 



21 
 

interpretation of the quality score is closely related to the purpose of the study. For example, in the case of the 

KGE, in the literature, Knoben et al., (2019) suggest that the mean flow as a predictor does not result in KGE 

= 0, but instead KGE = 1-√2 ≈ -0.41. Thus, KGE values greater than -0.41 indicate that a model improves upon 

the mean flow benchmark, even if the model’s KGE value is negative. Furthermore, the different values of the 

different scores cannot be directly compared because their relationship is not unique. As in the case of the 

PBIAS which measures the average tendency of the simulated values to be greater or less than those observed 

with respect to RMSE, and MARE is sensitive to extreme values (outliers) and to low values. Furthermore, for 

the analysis it was decided to also select specific case studies, relating to domain 1. For these comparisons, an 

unconventional metric was used considering the river flow profile as a signal and for this reason the indicators 

of generic signal studies have been used. 

 

6.1. Annual Hydrological Analisys 

The hydrological model has been forced with different precipitation scenarios, according to the Table 3: 

GAUGE, SATH03B, G3SATH03B, G5SATH03B and for DOMAIN01, the simulation has been carried out 

also forcing the model with the satellite data SATH68. 

6.1.1. DOMAIN01 – Po River Basin 

The comparison between the different time series for the year 2019 are showed in Fig. 10. For this type of 

comparison, an intuitive analysis is not immediate, for this reason the graphical representations are shown. 

Figure 11 represents the graphs relating to the results of some of the selected quality scores, which are shown 

as an example.  

From a hydrological point of view, the results are not always satisfactory, for example negative KGE values 

are not always accepted by the scientific community (Knoben et al., 2019). It is necessary, however, not to 

forget that the hydrological model was not voluntarily calibrated ad hoc for this study, as it was used as a pure 

analysis tool. Furthermore, given that the other components of the hydrological balance, such as melting and 

anthropogenic presence, have not been considered, an analysis over a long time series can distort the result. 

This mainly depends on the base flow of the river which is certainly not well simulated. For this reason, an 

analysis of the case studies representing periods of flood waves have also been selected and described in the 

following section. The purpose of this study is to demonstrate that the use of the EUMETSAT satellite data 

improves the performance of the hydrological model compared to the use of the rain gauge data alone, which 

has always been considered the most reliable product. 
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Figure 10. Flow discharge time series comparison at Isola S. Antonio Station on Po River Basin for the year 2019. 

 

 

  

Figure 11. Quality Scores (KGE and MARE) related to Po – Isola S. Antonio Station. 
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In order not to divert attention from the purpose of this work, it was decided to report the results of the quality 

scores as a percentage value with respect to the reference simulation, where the model has been forced with 

only the rain gauge data (fig. 12), according to the following equation: 

 

𝑠𝑐𝑜𝑟𝑒𝐺𝐴𝑈𝐺𝐸−𝑠𝑐𝑜𝑟𝑒𝑆𝐶𝐸𝑁

|𝑠𝑐𝑜𝑟𝑒𝐺𝐴𝑈𝐺𝐸|
                                                                       (11) 

 

where scoreSCEN refers to the scores of each single scenario. The trend of the percentages depends on the type 

of score. For example, in the case of KGE, where values greater than 0 indicate better performance of the 

model, the positive percentages indicate that the rain field is better represented than the one rebuilt with only 

the rain gauges. The results indicate a marked improvement for the year 2019, up to 269% for the g3satH03B 

simulation, 155% for the satH03B, 191% for the g5satH03B and 211% for the satH68 compared to KGE = -

0.33 of the GAUGE simulation (Table 6).  

In the case of 2017, the good results obtained from the merging of rain gauge and satellite data were verified, 

although an improvement in performance using only satellite data is not confirmed, as in the case of 2019. 

This evidence has been carried out in the analyzed data relating to the other domains. In the case of the Mean 

Absolute Relative Error (MARE), the best performances are associated with values close to zero. This means 

that an improvement in performance is associated with negative percentages. 

 

  

Figure 12. Quality Score percentage value with respect to the GAUGE reference simulation. 

 

Although MARE is a score that describes different characteristics of the time series comparison, the 

performance results are comparable with those of the KGE. The same result is also obtained by observing the 

other quality scores with the same approach. Performance is improved by using the NSE and the RMSE (Figure 

13). The complete table, with all the quality scores is reported. 
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Figure 13. Quality Score percentage value with respect to the GAUGE reference simulation. 

 

 

Table 6. Quality Score relate to Po – Isola S. Antonio. 

Year 
NAME 

SIM 
KGE NSE RMSE 

KGE 
prime 

KGE 
enp 

MARE PBIAS 
NSE 
cm2 

KGE 
c2m 

KGE 
prime_c2m 

KGE 
enp_c2m 

2016 

GAUGE -0.72 -3.42 620.75 -0.04 0.34 0.79 -38.28 -0.63 -0.27 -0.02 0.20 

SATH03B -0.66 -4.51 693.38 -0.01 0.08 1.01 -72.29 -0.69 -0.25 0.00 0.04 

G3SATH03B 0.34 -0.43 353.69 0.47 0.47 0.59 -12.83 -0.18 0.20 0.31 0.31 

G5SATH03B 0.02 -0.99 416.66 0.27 0.45 0.61 -16.31 -0.33 0.01 0.16 0.29 

SATH68 0.01 -1.22 439.83 0.38 0.35 0.71 -43.15 -0.38 0.01 0.24 0.21 

2017 

GAUGE -0.50 -3.65 372.71 0.01 0.26 0.82 -34.24 -0.65 -0.20 0.01 0.15 

SATH03B -1.26 -8.36 528.88 -0.28 0.04 0.98 -60.72 -0.81 -0.39 -0.12 0.02 

G3SATH03B -0.02 -1.90 294.35 0.14 0.28 0.69 -13.09 -0.49 -0.01 0.07 0.16 

G5SATH03B -0.06 -1.94 296.68 0.14 0.30 0.70 -15.09 -0.49 -0.03 0.07 0.18 

SATH68 -2.05 -14.98 691.22 -0.64 -0.06 1.07 -75.52 -0.88 -0.51 -0.24 -0.03 

2018 

GAUGE -0.29 -2.13 825.20 0.12 0.42 0.69 -25.42 -0.52 -0.13 0.06 0.27 

SATH03B 0.00 -1.75 773.58 0.03 0.33 0.76 -2.36 -0.47 0.00 0.02 0.20 

G3SATH03B 0.20 -0.97 654.99 0.02 0.40 0.63 11.46 -0.33 0.11 0.01 0.25 

G5SATH03B 0.06 -1.21 692.85 0.08 0.45 0.61 -1.51 -0.38 0.03 0.04 0.29 

SATH68 0.16 -0.94 649.08 0.40 0.43 0.63 -23.66 -0.32 0.09 0.25 0.27 

2019 

GAUGE -0.33 -1.89 657.43 0.25 0.37 0.76 -43.33 -0.49 -0.14 0.14 0.23 

SATH03B 0.18 -0.95 539.81 0.37 0.38 0.73 -17.27 -0.32 0.10 0.22 0.24 

G3SATH03B 0.56 0.06 375.97 0.54 0.47 0.58 1.85 0.03 0.39 0.37 0.30 

G5SATH03B 0.30 -0.34 448.02 0.45 0.49 0.60 -11.90 -0.15 0.18 0.29 0.33 

SATH68 0.37 -0.25 432.34 0.55 0.47 0.59 -28.72 -0.11 0.22 0.38 0.31 

 

To confirm what was observed, the same analysis was made for the data relating to the Tanaro station in Alba. 

Also, for these comparisons it is evident that an improvement in the performance of the model using the merged 

gauge-sat data, in particular the simulation G3SATH03B. 
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Figure 14. Quality Score percentage value with respect to the GAUGE reference simulation. 

 

Table 7. Quality Score relate to Tanaro - Alba. 

Year 
NAME 

SIM 
KGE NSE RMSE 

KGE 
prime 

KGE 
enp 

MARE PBIAS 
NSE 
cm2 

KGE 
c2m 

KGE 
prime_c2m 

KGE 
enp_c2m 

2016 

GAUGE -0.157 -0.903 172.3 0.2592 0.275 1.1037 -26.37 -0.311 -0.073 0.1489 0.1594 

SATH03B 0.55 0.1432 115.61 0.5334 0.2559 1.0469 -17.32 0.0771 0.3793 0.3637 0.1467 

G3SATH03B 0.7315 0.5784 81.097 0.6368 0.3278 0.7682 17.482 0.4069 0.5767 0.4672 0.196 

G5SATH03B 0.4346 0.1641 114.19 0.4036 0.3514 0.8743 2.0777 0.0894 0.2776 0.2528 0.2132 

SATH68 0.5273 0.3586 100.02 0.6143 0.3417 0.832 -7.048 0.2185 0.3581 0.4434 0.2061 

2017 

GAUGE -1.143 -7.173 68.633 -1.196 0.3238 1.0888 1.8043 -0.781 -0.363 -0.374 0.1931 

SATH03B -2.089 -14.35 94.079 -1.714 0.1979 1.1725 -10.89 -0.877 -0.51 -0.461 0.1098 

G3SATH03B -0.444 -3.865 52.956 -1.208 0.184 0.9237 27.786 -0.659 -0.181 -0.376 0.1013 

G5SATH03B -0.597 -4.442 56.005 -1.182 0.2548 0.9696 20.682 -0.689 -0.23 -0.371 0.146 

SATH68 -2.755 -20.47 111.25 -1.699 0.213 1.2203 -31.19 -0.911 -0.579 -0.459 0.1192 

2018 

GAUGE 0.0824 -1.106 138.62 -0.184 0.3835 0.7903 13.776 -0.356 0.043 -0.084 0.2372 

SATH03B 0.0538 -1.488 150.65 -0.699 0.1489 0.9458 40.265 -0.426 0.0276 -0.259 0.0804 

G3SATH03B 0.2541 -0.538 118.46 -0.528 0.1956 0.8014 48.731 -0.212 0.1455 -0.208 0.1084 

G5SATH03B 0.3079 -0.491 116.62 -0.316 0.2947 0.737 35.181 -0.197 0.1819 -0.136 0.1728 

SATH68 0.3246 -0.595 120.64 0.0301 0.3521 0.7474 22.113 -0.229 0.1938 0.0153 0.2136 

2019 

GAUGE -0.584 -3 122.14 -0.52 0.3945 0.9376 -2.614 -0.6 -0.226 -0.206 0.2457 

SATH03B 0.0798 -1.384 94.299 -0.522 0.2788 0.8451 29.611 -0.409 0.0415 -0.207 0.162 

G3SATH03B 0.3299 -0.394 72.123 -0.397 0.2649 0.7437 40.788 -0.164 0.1975 -0.165 0.1526 

G5SATH03B 0.0393 -1.094 88.379 -0.513 0.3464 0.796 24.035 -0.353 0.02 -0.204 0.2095 

SATH68 0.1609 -0.775 81.377 -0.149 0.391 0.7412 16.092 -0.279 0.0874 -0.069 0.243 
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6.1.2 DOMAIN02 – Tevere River Basin 

The same considerations were made for DOMAIN02. Also, in this case the G3SATH03B simulation seems to 

be more performing than the others in most of the years simulated for the data related to the sensor in Ponte 

Felcino.  

 

  

  

Figure 15. Quality Score percentage value with respect to the GAUGE reference simulation. 

 

Table 8. Quality Score relate to Tevere – Ponte Felcino. 

Year 
NAME 

SIM 
KGE NSE RMSE 

KGE 
prime 

KGE 
enp 

MARE PBIAS 
NSE 
cm2 

KGE 
c2m 

KGE 
prime_c2m 

KGE 
enp_c2m 

2016 

GAUGE -0.157 -0.903 172.3 -0.035 0.3366 0.7877 -38.28 -0.63 -0.265 -0.017 0.2023 

SATH03B 0.55 0.1432 115.61 -0.008 0.0751 1.0104 -72.29 -0.692 -0.247 -0.004 0.039 

G3SATH03B 0.7315 0.5784 81.097 0.47 0.4677 0.5853 -12.83 -0.178 0.2027 0.3072 0.3052 

G5SATH03B 0.4346 0.1641 114.19 0.2707 0.4484 0.6121 -16.31 -0.33 0.0116 0.1565 0.289 

2017 

GAUGE -1.143 -7.173 68.633 0.0146 0.2616 0.8159 -34.24 -0.645 -0.199 0.0073 0.1504 

SATH03B -2.089 -14.35 94.079 -0.284 0.0403 0.9762 -60.72 -0.806 -0.386 -0.124 0.0205 

G3SATH03B -0.444 -3.865 52.956 0.135 0.2815 0.689 -13.09 -0.487 -0.012 0.0724 0.1638 

G5SATH03B -0.597 -4.442 56.005 0.1369 0.3007 0.7005 -15.09 -0.492 -0.03 0.0735 0.177 

2018 

GAUGE 0.0824 -1.106 138.62 0.1189 0.4194 0.6903 -25.42 -0.516 -0.126 0.0632 0.2653 

SATH03B 0.0538 -1.488 150.65 0.0318 0.3301 0.7588 -2.357 -0.467 -0.001 0.0161 0.1976 

G3SATH03B 0.2541 -0.538 118.46 0.022 0.398 0.6277 11.456 -0.327 0.1101 0.0111 0.2485 

G5SATH03B 0.3079 -0.491 116.62 0.0839 0.4509 0.612 -1.51 -0.376 0.0304 0.0438 0.2911 

2019 

GAUGE -0.584 -3 122.14 0.249 0.3719 0.7573 -43.33 -0.485 -0.141 0.1422 0.2284 

SATH03B 0.0798 -1.384 94.299 0.3662 0.3845 0.7335 -17.27 -0.32 0.0988 0.2241 0.238 

G3SATH03B 0.3299 -0.394 72.123 0.5394 0.4656 0.5771 1.8464 0.0289 0.3851 0.3693 0.3034 

G5SATH03B 0.0393 -1.094 88.379 0.45 0.4949 0.5982 -11.9 -0.145 0.1764 0.2903 0.3288 
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An improvement in performance is also recorded for the Pierantonio sensor, although they are better for the 

G5SATH03B simulations. In figure 16 in the graph of the KGE relating to the curve of the year 2018 there is 

a marked percentage variation of the various precipitation scenarios with respect to the GAUGE simulation 

whose KGE value is equal to 0.0241, compared to -0.313 of the SATH03B and 0.4157 of G5SATH03B. 

  

  

Figure 16. Quality Score percentage value with respect to the GAUGE reference simulation. 

 

Table 9. Quality Score relate to Tevere – Pierantonio. 

Year 
NAME 

SIM 
KGE NSE RMSE 

KGE 
prime 

KGE 
enp 

MARE PBIAS 
NSE 
cm2 

KGE 
c2m 

KGE 
prime_c2m 

KGE 
enp_c2m 

2016 

GAUGE -0.586 -3.183 53.877 -0.025 0.3566 1.2331 -32.06 -0.614 -0.226 -0.012 0.217 

SATH03B -1.988 -12.65 97.33 -0.532 -0.278 2.1423 -91.83 -0.863 -0.498 -0.21 -0.122 

G3SATH03B -0.693 -4.929 64.139 -0.229 0.1872 1.5116 -28.32 -0.711 -0.257 -0.102 0.1032 

G5SATH03B -0.08 -1.939 45.16 0.0409 0.3392 1.1603 -7.986 -0.492 -0.038 0.0208 0.2043 

2017 

GAUGE -1.888 -10.26 45.945 -0.401 -0.064 1.9481 -88.23 -0.836 -0.485 -0.167 -0.031 

SATH03B -5.262 -47.65 95.476 -1.476 -0.842 2.9347 -166.5 -0.959 -0.724 -0.424 -0.296 

G3SATH03B -2.658 -19.33 61.716 -1.408 0.1497 1.7509 -41.08 -0.906 -0.57 -0.413 0.0809 

G5SATH03B -1.349 -8.508 42.206 -0.592 0.2574 1.5426 -34.85 -0.809 -0.402 -0.228 0.1477 

2018 

GAUGE 0.0241 -1.348 58.06 0.2122 0.5172 1.1003 -13.25 -0.402 0.0122 0.1186 0.3488 

SATH03B -0.313 -3.37 79.208 -0.223 0.2438 1.5064 -6.259 -0.627 -0.135 -0.1 0.1388 

G3SATH03B 0.1616 -1.042 54.147 -0.083 0.2818 1.1791 25.288 -0.342 0.0879 -0.04 0.164 

G5SATH03B 0.4157 -0.218 41.818 0.2372 0.428 0.9875 23.737 -0.098 0.2624 0.1345 0.2722 

2019 

GAUGE -0.601 -2.715 74.425 0.1206 0.2172 1.3941 -49.71 -0.575 -0.231 0.0641 0.1218 

SATH03B 0.1928 -0.639 49.44 -0.041 0.2367 1.1645 33.726 -0.242 0.1067 -0.02 0.1342 

G3SATH03B 0.2885 0.0509 37.613 0.1158 0.2324 0.9602 45.739 0.0261 0.1686 0.0614 0.1314 

G5SATH03B 0.5539 0.1877 34.796 0.2888 0.3748 0.8824 22.448 0.1035 0.383 0.1687 0.2306 
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6.1.3 DOMAIN03 – Volturno River Basin 

For DOMAIN03, the hydrological simulations cannot be considered satisfactory. Quality Score values are very 

low compared to those observed for the other domains. However, this could also depend on the low quality of 

the data observed for this catchment area, as shown in Figure 9. The aspect that remains constant, however, is 

that despite the limitations of the hydrological model, an improvement in the performance of the model can be 

observed using the different rainfall scenarios.  

  

  

Figure 17. Quality Score percentage value with respect to the GAUGE reference simulation. 

 

Table 9. Quality Score relate to Calore – Solopaca. 

Year 
NAME 

SIM 
KGE NSE RMSE 

KGE 
prime 

KGE 
enp 

MARE PBIAS 
NSE 
cm2 

KGE 
c2m 

KGE 
prime_c2m 

KGE 
enp_c2m 

2016 

GAUGE -0.782 -0.994 102.19 -0.827 -0.726 2.3935 -161.9 -0.332 -0.281 -0.292 -0.266 

SATH03B -1.851 -4.915 175.97 -1.616 -1.599 3.6973 -240.6 -0.71 -0.48 -0.447 -0.444 

G3SATH03B -0.768 -1.755 120.09 -0.787 -0.681 2.6593 -146.4 -0.467 -0.277 -0.282 -0.254 

G5SATH03B -0.465 -0.833 97.961 -0.554 -0.407 2.2352 -120.4 -0.294 -0.188 -0.217 -0.169 

2017 

GAUGE -6.794 -25.9 168.1 -5.597 -5.59 6.7655 -656.4 -0.928 -0.772 -0.736 -0.736 

SATH03B -5.92 -25.39 166.49 -4.524 -4.528 6.1113 -548.5 -0.926 -0.747 -0.693 -0.693 

G3SATH03B -2.436 -8.808 101.49 -1.704 -1.668 3.2164 -259.2 -0.814 -0.549 -0.46 -0.454 

G5SATH03B -3.26 -10.27 108.82 -2.53 -2.514 3.8719 -345.8 -0.837 -0.619 -0.558 -0.556 

2018 

GAUGE -4.421 -11.5 124.5 -3.707 -3.711 4.8521 -467.9 -0.851 -0.688 -0.649 -0.649 

SATH03B -4.298 -18.47 155.34 -3.188 -3.181 5.0436 -410.1 -0.902 -0.682 -0.614 -0.614 

G3SATH03B -2.837 -8.449 108.22 -2.293 -2.279 3.8223 -319.8 -0.808 -0.586 -0.534 -0.532 

G5SATH03B -2.663 -5.979 93.006 -2.281 -2.27 3.5545 -320.9 -0.749 -0.571 -0.532 -0.531 

2019 

GAUGE -6.162 -14.63 152.57 -5.435 -5.422 6.5635 -640.6 -0.879 -0.754 -0.731 -0.73 

SATH03B -3.821 -9.842 127.04 -3.3 -3.245 5.1011 -420.9 -0.831 -0.656 -0.622 -0.618 

G3SATH03B -2.919 -5.179 95.912 -2.655 -2.602 4.1454 -356.4 -0.721 -0.593 -0.57 -0.565 

G5SATH03B -3.245 -5.142 95.626 -2.964 -2.93 4.2498 -389.7 -0.719 -0.618 -0.597 -0.594 
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Figure 18. Quality Score percentage value with respect to the GAUGE reference simulation. 

 

Table 10. Quality Score relate to Calore – Benevento. 

Year 
NAME 

SIM 
KGE NSE RMSE 

KGE 
prime 

KGE 
enp 

MARE PBIAS 
NSE 
cm2 

KGE 
c2m 

KGE 
prime_c2m 

KGE 
enp_c2m 

2016 

GAUGE -0.782 -0.994 102.19 -0.827 -0.726 2.3935 -161.9 -0.332 -0.281 -0.292 -0.266 

SATH03B -1.851 -4.915 175.97 -1.616 -1.599 3.6973 -240.6 -0.71 -0.48 -0.447 -0.444 

G3SATH03B -0.768 -1.755 120.09 -0.787 -0.681 2.6593 -146.4 -0.467 -0.277 -0.282 -0.254 

G5SATH03B -0.465 -0.833 97.961 -0.554 -0.407 2.2352 -120.4 -0.294 -0.188 -0.217 -0.169 

2017 

GAUGE -6.794 -25.9 168.1 -5.597 -5.59 6.7655 -656.4 -0.928 -0.772 -0.736 -0.736 

SATH03B -5.92 -25.39 166.49 -4.524 -4.528 6.1113 -548.5 -0.926 -0.747 -0.693 -0.693 

G3SATH03B -2.436 -8.808 101.49 -1.704 -1.668 3.2164 -259.2 -0.814 -0.549 -0.46 -0.454 

G5SATH03B -3.26 -10.27 108.82 -2.53 -2.514 3.8719 -345.8 -0.837 -0.619 -0.558 -0.556 

2018 

GAUGE -4.421 -11.5 124.5 -3.707 -3.711 4.8521 -467.9 -0.851 -0.688 -0.649 -0.649 

SATH03B -4.298 -18.47 155.34 -3.188 -3.181 5.0436 -410.1 -0.902 -0.682 -0.614 -0.614 

G3SATH03B -2.837 -8.449 108.22 -2.293 -2.279 3.8223 -319.8 -0.808 -0.586 -0.534 -0.532 

G5SATH03B -2.663 -5.979 93.006 -2.281 -2.27 3.5545 -320.9 -0.749 -0.571 -0.532 -0.531 

2019 

GAUGE -6.162 -14.63 152.57 -5.435 -5.422 6.5635 -640.6 -0.879 -0.754 -0.731 -0.73 

SATH03B -3.821 -9.842 127.04 -3.3 -3.245 5.1011 -420.9 -0.831 -0.656 -0.622 -0.618 

G3SATH03B -2.919 -5.179 95.912 -2.655 -2.602 4.1454 -356.4 -0.721 -0.593 -0.57 -0.565 

G5SATH03B -3.245 -5.142 95.626 -2.964 -2.93 4.2498 -389.7 -0.719 -0.618 -0.597 -0.594 

 

Also in this case, it has been verified the improvement of the simulations where the rain area is rebuilt using 

merged gauge-sat data, although a clear distinction between G3SATH03B and G5SATH03B is not evident. 
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6.2  Case Studies on Tanaro River Basin 

The analysis of long time series is affected by systematic errors due, for example, to the components of the 

hydrological balance not considered (melting) or also to the quality of the observed data. 

According to the author's experience, it is essential to also consider case studies of severe hydrological events, 

where the flood wave drivers of rivers are connected to the intensity and distribution of rainfall. This approach 

is important for the purpose of this work: evaluate the different rain scenarios forcing the hydrological model. 

The results show that the approach is valid, as quality scores improve significantly. Furthermore, the analysis 

confirms what has been verified in the previous sections: the use of the combined gauge-sat data improves the 

performance of the hydrological model. The results have been carried out for the Tanaro river. In details, they 

are related to the Alba station, located in the middle part of the main river path. In fig. 19 a graphic 

representation of the density and distribution of the rain gauge is shown and the coverage of the data as a 

function of the radius of influence. 

 

  

Figure 19. Tanaro Basin: distribution and density of sensors and rain gauge data coverage: left panel, RADIUS = 3 

km; right panel, RADIUS = 5 km. 

 

The Table 11 shows in more details all the information related to the considered area. For example, in the case 

of the mountain area of the Tanaro basin, this area covers 26% of the entire Tanaro basin. Regarding this area, 

77% coverage of the rain gauge data is expected if the used radius of influence is equal to 5 km and 21% if the 

radius of influence is equal to 3 km.  

 

Table 11. Percentage of covered surface size by the rain gauge data on Tanaro Basin. 

Domain Basin Covered Basin 
Area % 

Montain area Hilly area Flat area 

  R = 5 km R = 3 km Area% R = 5 km R = 3 km Area% R = 5 km R = 3 km Area% R = 5 km R = 3 km 

01 Tanaro 0.58 0.17 0.26 0.77 0.21 0.35 0.71 0.19 0.37 0.51 0.12 
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Tables 13 and 14 list the 17 quality scores carried out from the comparison between observed and simulated 

flow discharge and they are related to the Alba station on Tanaro basin, for the four selected case studies.  

The four case studies (Tab. 12) were not randomly chosen but in a strategic way, to have a continuity of the 

observed flow discharge data and referred to different seasonal period.  

Very important evidence is that using satellite data merged with gauge data, the trend is towards improving 

the performance of hydrological simulations. 

 

Tab. 12. Case Studies List 

Case Study Period 

01 23/11/16 00 - 27/11/16 23 

02 02/05/18 00 - 06/05/18 23 

03 31/10/18 00 - 04/11/18 23 

04 25/11/19 00 - 29/11/19 23 

 

In details, referring for example to CS03, of which the related graphs to the comparison between observed and 

simulated data are also reported, even if the results of the NSE may not be considered good for the scientific 

community, the improvement of the results is highlighted in values ranging from -9.24 for simulations that use 

only rain gauge data to -0.24 for G3SATH03B simulation. An improvement in performance is also intuitive 

from the observation of the Figures 20, 21, 22 and 23. The same results are confirmed, for example, also by 

the Match Correlation score, which shows the best performances for the G3SATH03B simulation. The same 

conclusions are confirmed for the CS04, where the NSE assumes a more performing value for the 

G3SATH03B simulation, 0.42. The result of the simulation that uses only the satellite data is also better than 

the simulation with only the rain gauge data, respectively, -0.96 and -2.24, although negative results. 

Also, very interesting are the results of the NSE of CS01, where the simulation with the hydrological model 

forced with only satellite data is associated with a higher value of NSE, 0.49, compared to -1.9 of the forced 

models with the gauge data. So, in this case the best performances are associated with simulations where 

satellite data have a greater weight: NSE for G3SATH03B is 0.50. The other scores mostly confirm the same 

trend. For the CS02, we have a positive NSE result associated with the simulation that uses only the rain gauge 

data, 0.37, which is not improved by the other simulations, but it is comparable with the G5SATH03B 

simulation. The performance of the model certainly improves compared to just using satellite data. 

All results confirm the weight of the different data sets as a function of the area coverage due to the choice of 

the radius of influence. This consideration depends on the usage of the modular approach: in this way it is 

possible to consider the different nature of the data, assimilating the different data sets using a hierarchical 

sequence of modules. 
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Table 13. Quality Score Results 

CS NAME SIM NSE 
NSE 
c2m 

KGE 
KGE 
c2m 

KGE 
prime 

KGE 
primec2m 

KGE  
enp 

KGE 
enp c2m 

01 

GAUGE -1.93 -0.49 -0.43 -0.18 0.07 0.04 0.09 0.05 

SATH03B 0.49 0.33 0.47 0.31 0.41 0.26 0.47 0.31 

G3SATH03B 0.50 0.33 0.72 0.57 0.66 0.49 0.79 0.66 

G5SATH03B -0.14 -0.07 0.32 0.19 0.56 0.38 0.63 0.46 

          

02 

GAUGE 0.37 0.23 0.52 0.35 0.52 0.36 0.78 0.64 
SATH03B -5.66 -0.74 -0.87 -0.30 -1.24 -0.38 -0.66 -0.25 

G3SATH03B -0.96 -0.32 -0.11 -0.05 -0.02 -0.01 -0.03 -0.01 

G5SATH03B 0.37 0.23 0.68 0.51 0.51 0.35 0.56 0.38 

          

03 

GAUGE -9.15 -0.82 -0.93 -0.32 -0.06 -0.03 0.08 0.04 

SATH03B -0.85 -0.30 0.24 0.13 0.18 0.10 0.30 0.18 

G3SATH03B -0.24 -0.11 0.47 0.31 0.41 0.26 0.60 0.43 
G5SATH03B -1.92 -0.49 0.02 0.01 0.29 0.17 0.55 0.38 

          

04 

GAUGE -2.24 -0.53 -0.70 -0.26 -0.05 -0.02 0.59 0.42 

SATH03B -0.96 -0.32 -0.13 -0.06 -0.10 -0.05 0.21 0.12 

G3SATH03B 0.42 0.27 0.54 0.37 0.55 0.38 0.59 0.41 

G5SATH03B 0.37 0.22 0.26 0.15 0.15 0.08 0.79 0.65 

 

 

Table 14. Quality Score Results 

CS NAME SIM rmse MARE PBIAS MC CT DELAY DTW DDTW TP DELAY E% 

01 

GAUGE 1214.30 1.02 -90.40 1.9 -8 12.99 0.08 6 0.78 

SATH03B 505.47 0.51 44.57 0.55 -6 2.18 0.06 4 -0.39 

G3SATH03B 504.21 0.50 14.74 0.85 -9 0.4 0.07 5 -0.13 

G5SATH03B 759.20 0.63 -35.06 1.35 -9 2.36 0.07 6 0.31 
           

02 

GAUGE 180.86 0.34 -0.56 1.01 0 2.78 0.02 6 0.3 

SATH03B 590.00 1.28 29.09 0.71 44 51.58 0.27 -41 0.45 

G3SATH03B 319.73 0.69 46.61 0.75 40 13.44 0.04 3 -0.53 

G5SATH03B 181.07 0.32 25.30 0.91 2 3.5 0.02 5 -0.07 
           

03 

GAUGE 335.62 0.86 -86.13 1.86 -5 20.78 0.07 9 1.03 

SATH03B 143.31 0.42 26.08 0.74 0 3.86 0.05 51 -0.26 

G3SATH03B 117.41 0.35 18.68 0.81 -4 1.29 0.03 8 -0.18 

G5SATH03B 179.98 0.41 -26.21 1.26 -5 2.64 0.03 9 0.38 
           

04 

GAUGE 278.44 0.61 -34.26 1.34 0 4.21 0.01 0 0.92 

SATH03B 216.48 0.59 41.06 0.59 -49 2.51 0.01 56 -0.55 

G3SATH03B 117.59 0.38 38.22 0.62 0 0.67 0 0 -0.42 

G5SATH03B 123.26 0.37 6.19 0.94 0 0.56 0.01 0 0.22 
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Figure 20. a) Comparison between Observed and Simulated Flow Discharge. The hydrological simulation has been 

carried out forcing hydrological model with rain gauge data. b) Match Correlation Quality Score: Auto Correlation and 

Cross Correlation are scaled respect to the max value between the two. 

 

Figure. 21. a) Comparison between Observed and Simulated Flow Discharge. The hydrological simulation has been 

carried out forcing hydrological model with Satellite data. b) Match Correlation Quality Score: Auto Correlation and 

Cross Correlation are scaled respect to the max value between the two. 

a 

b 

a 

b 
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Figure 22. a) Comparison between Observed and Simulated Flow Discharge. The hydrological simulation has been 

carried out forcing hydrological model with merged rain gauge data (R=3 km) and Satellite data (G3SAT). b) Match 

Correlation Quality Score: Auto Correlation and Cross Correlation are scaled respect to the max value between the two. 

 
Figure 23. a) Comparison between Observed and Simulated Flow Discharge. The hydrological simulation has been 

carried out forcing hydrological model with merged rain gauge data (R=5 km) and Satellite data (G5SAT). b) Match 

Correlation Quality Score: Auto correlation and Cross Correlation are scaled respect to the max value between the two. 
 

a 

b 

a 
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7 Conclusion 

The assimilation of rainfall data from different data sources deals with a deep knowledge about the source of 

the observations, its characteristics, and its limits. The downscaling of precipitation and its applicability over 

different geographical domain has a particular importance for hydrological applications, such as flood 

prediction and monitoring, as well as water management. The precipitation data is characterized by complex 

patterns and high spatial variability, which is increased in complex orography. Consequently, it is characterized 

by the same spatial and temporal variability, and the information given by different observations can help to 

adequately reproduce such behaviour. The rainfall patterns strongly impact the runoff calculation in 

hydrological models because the relationship between rainfall distribution and computed discharge is 

nonlinear. 

For the operational activity, hydrological models have been forced with observed and predicted rainfall data. 

The uncertainty of the hydrological forecasts is strongly connected to the uncertainty of the rainfall field 

estimates of the atmospheric forecasting models. It is very important to force hydrological models with realistic 

observed rainfall data, which are fundamental for the spin-up of the model, to reduce this uncertainty. The rain 

gauge data are considered the most accurate observed data, even if rainfall spatial pattern from rain gauges is 

affected by errors, depending on data scarcity, sparse sensor network, associated with the lack of a robust or 

redundant infrastructure, able to guarantee data transmission and functionality during a severe weather event. 

The preliminary analyses show that the usage of satellite data, H SAF Product, MW/IR H03B and H SAF 

MW-only products H68, can be a good tool to improve the performance of hydrological simulations. 

Moreover, the best results can be reached merging satellite data with rain gauge.  

Based on the analysis of the single case studies carried out on the Tanaro river, satellite data merged with 

gauge data were able to improve the areal precipitation estimation, for example for the Match Correlation 

Score, it was improved of about 80%, while in just one of four case studies, satellite data merged with gauge 

were not able to improve, but at least the simulation results are comparable to the simulation with rain gauge 

data only. The results show that even the use of satellite data alone can improve the simulation result, thanks 

to the cellular automata technique. Further analysis is needed to identify the right methodology for defining 

the Radius of Influence. The CETEMPS experience suggests that among the assimilation data techniques, 

Cellular Automata are certainly a valid assimilation data tool.  

Next steps are: 

✓ Improve sensitivity analysis to better understand how to tune satellite data versus rain gauge 

contributions. 

✓ Investigate on a better way to select the Radius of Influence. 
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