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1. Introduction 

Soil moisture has an important influence on hydrological and meteorological processes. Soil 

moisture is the main control of processes that partition rainfall into runoff and infiltration. 

Extreme hydrological events (floods and droughts) often have a large socio-economical 

impact and are strongly modulated by the soil moisture state of the landscape. Accurate 

estimates of soil moisture are hence important for a range of hydrological applications 

including flood and drought forecasting systems as well as hydrological assessment models. 

A realistic representation of the spatial variability of near surface soil moisture is also 

critically important for representing hydrological fluxes in the subsurface at various scales 

(Zehe and Blöschl, 2004) and for linking hydrological processes with atmospheric processes 

(Ronda et al. 2002; Montaldo and Albertson, 2003). 

Wagner et al. (2003) developed a soil moisture retrieval method for space-borne scatterometer 

systems that has been shown to produce accurate results in a number of settings (e.g. Scipal, 

2002). The satellite based monitoring is particularly appealing for large regions as it tends to 

cover large areas, and in an operational context, because of the regular sampling frequency. It 

is clear that the scatterometer data contain a lot of useful information on the spatial and 

temporal soil moisture dynamics. Methods of refined soil moisture retrieval are currently 

being developed by the Institute of Remote Sensing and Photogrammetry of the Vienna 

University of Technology as part of an H-SAF project. In the H-SAF project, the focus is on a 

relatively coarse spatial resolution as consistent with the sensor characteristics. However, 

there is significant spatial variation in soil moisture at a much finer scale and much of this 

small scale variability controls the runoff response from catchments. In turn, this small scale 

soil moisture variability is controlled by topography, soil type, precipitation and vegetation 

(Western et al., 2002), among other factors. This small scale variability cannot be resolved by 

the scatterometer data. Most hydrological applications that are of practical relevance cover 

catchment scales of a few to thousands of square kilometres and one is interested in the spatial 

distribution of soil moisture within these catchments. In contrast, the pixel resolution of the 

scatterometer data is on the order of ten thousand square kilometres, so is unable to resolve 

the within catchment variability of soil moisture. It would hence be extremely useful to 

downscale the scatterometer data to finer space scales based on hydrological concepts. This is 

the topic of the project reported here.  
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There are two basic issues of soil moisture upscaling/downscaling in the hydrological 

sciences. The first is how to best estimate average catchment soil moisture (or spatial 

distributions) from point soil moisture measured in the field, the second is how to best 

estimate patterns of soil moisture from catchment average soil moisture as measured by 

satellite sensors. The first issue is an upscaling task while the second one is downscaling. In 

both instances one can use deterministic process based models which is dealt with in Grayson 

and Blöschl (2000a) and Pitman (2003). Alternatively one can use simplified statistical 

descriptions that aim at representing the most important controls and these will be briefly 

reviewed here. These methods can either exploit the spatial statistics of soil moisture or make 

use of auxiliary information in terms of a moisture index (Blöschl, 2005; Western et al., 2002, 

2003).  

(a) Methods based on the spatial statistics: A number of authors have suggested that the 

spatial distribution function of soil moisture can be approximated by a normal distribution 

although the shape of the distribution does change with climate (e.g. Mohanty et al., 2000; 

Nyberg, 1996). The variance of the spatial distribution of soil moisture, when taking 

numerous studies around the world together (Western et al., 2003) tends to depend on mean 

catchment moisture, indicating a pattern of variance that increases from near zero at wilting 

point to a peak at moderate moisture levels and then decreases to near zero as the mean 

moisture approaches saturation. Understanding of the spatial distribution of soil moisture has 

been used in distribution models to estimate runoff generation and evaporation (Beven, 1995; 

Wood et al., 1992; Zhao, 1992). It is interesting that the shape of the distribution functions 

varies widely between models but the models are similarly successful in predicting catchment 

runoff.  

Studies on the spatial correlation of soil moisture have been summarised by Western et al. 

(2004). Typical correlation lengths vary between 1 m and 600 m and there is a tendency for 

the correlation lengths to increase with extent and spacing of the data as would be expected 

given the sampling scale effects (see, e.g., Skøien and Blöschl, 2006ab). While some of the 

small scale catchment studies suggest that the spatial soil moisture variability is stationary, 

analyses of remotely sensed soil moisture have found fractal behaviour (e.g. Hu et al., 1997). 

Ground based point data collected over large areas in the Former Soviet Union, Mongolia, 

China and the USA suggest that soil moisture variation could be represented as a stationary 

field with a correlation length of about 400 – 800 km (Entin et al., 2000). Part of the 

differences in correlation lengths in small scale and large scale studies may, again, be related 
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to sampling effects, although there also appear to exist important changes in the process 

controls with scale causing such differences. Over short scales, climate may be relatively 

uniform and the variation may be mainly related to differences in soils and vegetation 

(Seyfried, 1998) while at larger scales climate may be a dominant source of soil moisture 

variability. Methods of upscaling and downscaling that are based on the spatial statistics 

involve a wide spectrum of geostatistical methods to obtain spatial patterns or averages from 

point data or to obtain spatial patterns from catchment average soil moisture (e.g. Deutsch and 

Journel, 1992). These methods include conditional simulation methods based on the 

assumption that soil moisture is a Gaussian random field. Geostatistical methods can also be 

used to derive analytical estimates of how, say, the runoff contributing area in a distributed 

model will change with grid size (Western and Blöschl, 1999).  

(b) Index approach: In the index approach spatial organisation can be imposed on the soil 

moisture field that goes beyond the Gaussian random field of the previous method by using 

landscape characteristics. These characteristics are usually condensed into an index for 

numerical efficiency guided by the understanding one has about the movement of water in the 

landscape (Moore et al., 1991). In humid climates, lateral redistribution of moisture by 

shallow subsurface flow can be an important process and in this case, indices reflecting 

upslope area, slope, or convergence should be related to the soil moisture. The most 

commonly used index is the topographic wetness index of Beven and Kirkby (1979) (see also 

O'Loughlin, 1986) which is a function of the specific contributing area (being an index of the 

precipitation forcing) and the surface slope (being an index of the resistance of the soil to 

lateral flows). Terrain data are widely available and there exists sophisticated terrain analysis 

software (Wilson and Gallant 2000). Because of this, the wetness index is widely used for 

upscaling and downscaling soil moisture. The index involves a number of assumptions some 

of which have been relaxed. Barling et al. (1994), for example, relaxed the steady-state 

assumption and Woods et al. (1997) relaxed the assumption of uniform recharge. Western et 

al. (1999, 2002) examined the predictive ability of various terrain indices against soil 

moisture data collected in a small humid catchment in south-east Australia. The wetness index 

typically explained 50% of the spatial soil moisture variance during the wet season (Figure 

1a) and there were other indices that showed a similar performance such as the tangent 

curvature of the terrain (Figure 1b). The largest soil moisture values were collected in the 

gullies that exhibit large specific contributing areas and strongly negative tangent curvature. 

However, as the catchment dried out, the explanatory power of the indices dropped off 

rapidly. Western et al. (1999) also summarised tests of terrain indices in various climates and 
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noted that their predictive ability varies substantially, depending on whether their main 

assumptions are satisfied.  

All of these indices can be used to estimate a spatial pattern (or a spatial distribution) from 

average catchment soil moisture (i.e. downscaling) and to estimate a spatial pattern from point 

measurements. In the latter case, similar geostatistical methods can be used as discussed 

above but they are extended to accommodate the index as an auxiliary variable. Methods 

include external drift kriging, co-kriging and georegression (e.g. Blöschl and Grayson, 2000). 

Examples of applications include Viney and Sivapalan (2004) who disaggregated areal 

average soil moisture into spatial patterns and Green and Erskine (2004) who compared a 

geostatistical analysis with linear geo-regression using terrain indices. In spite of the 

considerable progress that has been made in the past decades on soil moisture upscaling and 

downscaling there is still significant uncertainty involved because of the large natural 

variability in soil moisture and its controls. If only a few point soil moisture measurements are 

available in a catchment the errors associated with upscaling them to catchment averages can 

be enormous (Grayson et al., 2002). An interesting extension of the index approach has 

therefore been proposed by Grayson and Western (1998). They suggested that concepts of 

time stability, applied to catchments with significant relief, can be used to identify certain 

parts of the landscape which consistently exhibit mean behaviour irrespective of the overall 

wetness. They denoted these areas as catchment average soil moisture monitoring (CASMM) 

sites. This approach promises to assist in the upscaling issue if point measurements of soil 

moisture can be located in these areas. For downscaling satellite soil moisture data, a 

combination of the index approach and the time stability assumption based on the spatial 

statistics seems to be a useful strategy. The idea of the index approaches is to represent the 

main hydrological processes in a simplified way and with a limited number of input data. In 

an operational context, this type of downscaling method is hence very appealing and has been 

pursued in this project. The main controls that were taken into account are topography, soils, 

and climate. All of them are represented in a simple and robust way.   

The aim of the study was to develop a downscaling method for scatterometer soil moisture 

data that allows to infer spatial patterns of soil moisture at a scale of a few square kilometres 

from the original scale of ten thousand square kilometres, based on hydrological concepts. 

The model was applied to scatterometer soil moisture data for all of Europe to assess the 

plausibility of the method. As mentioned above, Western et al. (1999, 2002) indicated that the 

predictive performance of downscaling methods of soil moisture may be modest because of 
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the inherent uncertainty of soil hydrological processes. It is hence important to test the actual 

value of the method as compared to the alternative of using the original scatterometer data 

directly in hydrological applications. The downscaling method was hence tested against 

independent ENVISAT Advanced Synthetic Aperture Radar (ASAR) data. The purpose of the 

comparison is to assess the added value of the downscaling method over simply using the 

original (coarse resolution) scatterometer data in hydrological applications.   

 

 

Figure 1: Relationship between volumetric soil moisture in the top 30 cm of the soil profile 
and wetness index, and tangent curvature for September 27, 1995 in the Tarrawarra 
catchment, Australia. From Western et al. (1999). 

 

 

2. Downscaling model 

The regional pixel scale in this study was chosen as 25 km which is an approximate pixel size 

of ERS scatterometer products of soil moisture. The local pixel scale was chosen as 1 km, 

which is consistent with hydrological modelling needs. 

The downscaling model proposed here is  

),(+),(.)(=),(Θ tctbξtL xxxx      (1) 

where LΘ  refers to the soil moisture at the local scale (1 km), ξ  is the fingerprint which 

depends on space x but does not depend on time t. b and c are parameters that depend on both 
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time and space and are estimated as a function of the soil moisture RΘ  at the regional scale 

(25 km), i.e. 

)Θ(= Rfb         (2) 

)Θ(= Rfc         (3) 

This downscaling model involves three assumptions:  

• The small scale pattern of soil moisture does not change with time. This means that a 

static index pattern, the so called fingerprint, can be used to downscale soil moisture. 

The concepts of patterns not changing with time is discussed in more detail in Wagner 

et al. (2008). This assumption can be straightforwardly relaxed if more detailed 

information is available without violating the other assumptions of the model. The 

fingerprint has been obtained here from a conceptual hydrological model that 

represents the understanding of hydrological soil moisture processes at the grid scale. 

The processes include lateral flow in the soil related to saturation excess runoff 

generation; vertical flow in the soil related to infiltration excess runoff generation; and 

water logging or ponding when the groundwater table rises to the surface. The 

fingerprint is ξ  in Eq. (1). 

• The spatial variance of the soil moisture LΘ  at the local scale was estimated from the 

spatial variance of the soil moisture RΘ  at the regional scale using scaling theory. In 

essence, the main observation of the scaling theory is that the spatial variance 

decreases with the spatial aggregation scale (i.e. the support) and this property is 

exploited here. The spatial variance of the soil moisture at the local scale is related to 

the parameter b in Eq. (1). 

• The spatial mean of the soil moisture LΘ  at the local scale was estimated from the 

spatial mean of the soil moisture RΘ  at the regional scale based on an unbiasedness 

constraint. This constraint is equivalent to the idea that soil moisture is mass 

conserving, so the regional scale soil moisture should be the spatial mean of the local 

soil moisture over a suitable aggregation area. The spatial mean of the soil moisture at 

the local scale is related to the parameter c in Eq. (1). 
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2.1 Fingerprints 

The concept of fingerprints was gleaned from Steinacker et al. (2006) although the 

downscaling method proposed here differs from theirs. To obtain the fingerprints, a 

conceptual hydrological model of the spatial patterns of soil moisture was developed. The 

model recognises three types of runoff generation processes (Figure 2). The model follows the 

idea of the Dominant Processes Concept of Grayson and Blöschl (2000b) that focuses on a set 

of the most important processes in a particular context rather than on modelling the processes 

in their full complexity (see also Blöschl, 2001). Depending on the process type, the 

fingerprint is estimated from different data. The following three process types are considered: 

Lateral flow in the soil and saturation excess runoff generation: This is the type of process 

often encountered in hilly terrain when runoff generation and soil moisture redistribution is 

dominated by lateral movement of soil moisture on the hillslopes. The fingerprint is modelled 

here as the balance of the forcing (rainfall) and the resistance (soils) similar to the wetness 

index of Beven and Kirkby (1979). Mean annual precipitation (MAP) was used for 

representing the forcing, terrain curvature (curv) was used for representing the resistance. The 

fingerprint is then calculated as the weighted mean of the two. The combination of MAP and 

curv implies large soil moisture in high rainfall areas and large soil moisture in valleys were 

the curvature is positive. Both MAP and curv were rescaled to unit standard deviations and 

combined to obtain the weighted mean:  

curvaMAPaξ .)_1(+.=1       (4) 

where a was chosen in a way that the MAP component controls the pattern of 1ξ  in 60% of 

the study domain (i.e. Europe) while curv controls the pattern of 1ξ  in the remaining 40%. 

This type of process was considered to be dominant in hilly and steep terrain. A threshold of 

terrain slope >4° was chosen for this process to be applicable (Table 1). For terrain flatter than 

0.1°, the processes discussed below were considered to be dominant (Figure 2). 

Vertical flow in the soil and infiltration excess runoff generation: This type of process often 

occurs in flat terrain in two instances. The first is where the soils are deep, so water can freely 

infiltrate into the soil without the groundwater table rising to the surface. The main control in 

this case is the soil texture. The fingerprint was hence assumed to be related to soil texture:  

textureξ a =2         (5) 
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where large grain sizes translate into a small value of the texture class and small grain sizes 

into a large value of the texture class. This means that sandy soils will produce relatively low 

soil moisture values while clays will produce large soil moisture values. The second instance 

is when the soils are shallow and the climate is relatively dry. In this case, again, the 

groundwater table will tend not to rise to the surface. Texture will again be the main control, 

so  

textureξ b =12         (6) 

Soils were considered to be deep for soil depths >200 cm, and shallow for soil depths <20cm. 

The climate was assumed to be dry for mean annual precipitation MAP < 300mm/yr. 

Water logging or ponding when the groundwater table rises to the surface: This type of 

process may occur in flat terrain when the climate is wet and preferably for shallow soils. If 

the groundwater table rises to the surface, one can assume that the soil moisture in the valleys 

and depressions will be higher than that on the hillslopes and tops. In valleys and depressions 

the curvature is positive while it is negative on the tops. The fingerprint was hence estimated 

from terrain curvature: 

 curvξ b =12         (7) 

A wet climate was assumed to exist with the mean annual precipitation was larger than 900 

mm/yr. 

All fingerprints were normalised to zero mean and unit standard deviation, where both the 

mean iζ  and the standard deviation 
iζ

σ  were estimated from the fingerprints over the entire 

domain: 

 
iζ

ii
i σ

ζζ
ζ

_
='         (8) 

The index i refers to the process type. The fingerprints for the three dominant process types 

were then combined based on the thresholds of Table 1. For the intermediate ranges, the 

combined fingerprint was estimated as a weighted mean, as indicted in Table 1. The 

combined fingerprint ξ' was again normalised to zero mean and unit standard deviation. 

However, in this case the mean 'ζ and the standard deviation 'ζσ were estimated over the 

entire domain. The normalised combined fingerprint ξ has zero mean and unit standard 

deviation. ξ is a function of space but not a function of time.   
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Table 1: Thresholds used for the combined fingerprint ξ'. 

Hydrologic characteristics Lower threshold Intermediate Upper threshold 

Mean annual precipitation MAP <300 mm/yr 300-900 mm/yr >900 mm/yr 

ξ'2b = ξ'2b1 weighted mean ξ'2b2 

Soil depth <20 mm 20-200 mm >200 mm 

ξ'2 = ξ'2b weighted mean ξ'2a 

Terrain slope <0.1° 0.1-4° >4° 

ξ' = ξ'2 weighted mean ξ'1 

 

 

 

fingerprint ξ

ξ1
lateral flow,

saturation excess
MAP, curvature

ξ2b2
groundwater 

ponding
curvature
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vertical flow, 
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texture

ξ2b1
vertical flow, 

infiltration excess
texture

steep slope flat slope

deep soil shallow soil

dry climate wet climate 

ξ2

ξ2b

 

Figure 2: Conceptual hydrological model for the downscaling fingerprint.  
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2.2 Spatial variance 

The spatial variance of the soil moisture LΘ  at the local scale was estimated from the spatial 

variance of the soil moisture RΘ  at the regional scale using scaling theory. Scaling theory 

relates the spatial variances at different support (or aggregation) scales. Because of the 

random elements in the spatial distribution of soil moisture, the spatial variance always 

decreases with support scale. The exact decrease is related to the spatial correlation structure 

of soil moisture. A number of studies have analyses the spatial correlation structure and the 

decrease of variance with support scale. Western et al. (1998, 2004) collected  high-resolution 

soil moisture in situ data from the 10.5 ha Tarrawarra catchment in south-eastern Australia. 

For each survey, up to 1536 data points in space were used to analyse the spatial correlatin 

structure. Western and Blöschl (1999) analysed the scaling characteristics of these soil 

moisture data. They found the change in variance as shown in Figure 3. Based on an 

exponential model to represent the spatial correlations they were able to predict the decrease 

in variance with aggregation scale (solid line in Figure 3). Other studies reviewed in Western 

et al. (1998; 2002, p. 167; 2003, p. 135; 2004), Blöschl (1999), Merz et al. (2001) and Skøien 

et al. (2003) suggest however, that the spatial correlations are fractal (or close to fractal) if a 

wide range of scales is considered and measurement biases are small (also see the review in 

the introduction section of this report). A fractal correlation structure implies that the 

correlation is related to distance by a power law. A power law of the correlation translates 

into a power law in the decrease in variance. Power law scaling relationships are shown in 

Figure 3 with exponents of α = 0.25 and 0.35 respectively. These exponents are also 

consistent with the scaling behaviour of the topographic wetness index of Beven and Kirkby 

(1979) calculated for all of Austria (Figure 4).  

Based on the literature evidence, the decrease in variance was assumed to follow a power law 

in this study:  

 ( )
α

R

L
RL L

Lσσ
_

22 .=        (9) 

where 2
Lσ  is the local variance (at the small grid scale), 2

Rσ  is the regional variance (at the 

large grid scale), LL and LR are the grid sizes (length scales) of 1 km and 25 km, respectively, 

and α is the exponent of the scaling relationship. This scaling relationship was then applied in 

the following steps: 
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• Estimate the large scale variance 2
Rσ  of soil moisture from subregions of 5x5 large-

scale pixels. 

• Interpolate this variance to the small scale grid using the centre of the large pixels as 

the reference points.  

• Scale the variance to the small scale for each small scale pixel using Eq. (9) and an 

exponent of α = 0.35. 

• Multiply the fingerprint by the small scale standard deviation, i.e.,  

LL σξξ .=         (10) 

• repeat the procedure for each small scale pixel. 

),( tξL x  now represents the pattern of soil moisture at the small scale with the variance of the 

soil moisture but with zero mean, i.e., a biased soil moisture estimate.  

 

 

Figure 3: Variance reduction of in situ soil moisture data by aggregation.  σ true
2  is the 

variance of the in situ data, 2
appσ is the apparent or aggregated variance, λtrue  is the correlation 

length (m) of the in situ data, Support is the aggregation scale (m). The markers indicate data 
from four field surveys, the solid black line is the aggregation model of Western and Blöschl 
(1999), the blue and red lines relate to the power laws of Eq. (9). Figure from Western and 
Blöschl (1999, p. 214), modified.  
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Figure 4: Variance reduction of the topographic wetness index of Beven and Kirkby (1979) 
calculated at a 250 m grid resolution for Austria. From Merz et al. (2001), modified.  

 

 

2.3 Spatial mean  

The spatial mean of the soil moisture LΘ  at the local scale was estimated from the spatial 

mean of the soil moisture RΘ  at the regional scale based on an unbiasedness constraint. This 

constraint is equivalent to the idea that soil moisture is mass conserving, so the regional scale 

soil moisture should be the spatial mean of the local soil moisture over a suitable aggregation 

area. The following steps were applied:  

• Calculate the mean RΘ of the large scale soil moisture over a moving window with a 

size LR, centred on each small scale pixel, by assuming that the soil moisture is 

spatially uniform within each large scale pixel.  

• Calculate the mean Lξ  of the biased soil moisture estimate at the small scale over a 

moving window with a size LR, centred on each small scale pixel. 

• Account for the unbiasedness constraint: 

LRLL ξξ _Θ+=Θ        (11) 
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LΘ  is then the downscaled soil moisture estimate. This final estimate was checked whether it 

exceeded a physically plausible range.  

 

 

3. Data  

In this study a range of earth-observation data (satellite data, soil data, model data) were used, 

which cover all of Europe. In time, the soil moisture data are from the period 2005-2007. The 

data are listed in the following:  

 

3.1 ERS scatterometer data 

Coarse-resolution soil moisture data (25 km) were derived from backscatter measurements 

acquired with scatterometers on-board of the European Remote Sensing (ERS) satellites ERS-

1 and ERS-2, which operate in C-band. To retrieve the soil moisture, the method of Wagner et 

al. (1999) was used. The method exploits the multi-incidence angle observation capability of 

the sensor to account for seasonal changes in vegetation. The algorithm is a change detection 

approach, which scales the instantaneous backscatter measurement by dry and wet backscatter 

reference values derived from multi-year time series. This produces a scaled soil moisture 

index ranging from 0 to 1. These limits represent the minimum soil moisture (around the 

wilting point) and saturation, respectively. The retrieved information is hence a relative 

measure of the surface soil moisture content corresponding to the degree of saturation of the 

soil surface layer (< 2 cm). These data are the regional scale (coarse resolution) data to be 

downscaled. 

 

3.2 ENVISAT ASAR data 

The Advanced Synthetic Aperture Radar (ASAR) instrument onboard the European 

Environmental Satellite (ENVISAT) delivers radar data in C-band from 2002 to present. Data 

in Global Monitoring (GM) mode with a spatial resolution of 1 km were used here. The 

datasets were pre-processed in several steps: the data were geocoded and corrected for 

geometric distortions (Range Doppler approach) with the GTOPO30 digital elevation model 

(United States Geological Survey), together with Shuttle Radar Topography Mission (SRTM) 
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data. The radiometric calibration corrected for the scattering area, antenna gain pattern and 

range spread loss. To account for the differences due to varying incidence angles and 

distances from the sensor, the data were normalised to a reference angle. These data are the 

local scale (high resolution) data used to test the plausibility of the downscaling method. 

 

3.3 Soil information data 

The European Soil Database (ESDB) contains soil related parameters for Europe with a cell 

size of 1 km x 1 km (version 2), and is available from the Joint Research Centre (JRC) of the 

European Commission. Soil texture and soil depths were used here.   

 

3.4 Digital terrain data 

The GTOPO30 digital elevation model was used in this study. GTOPO30 is a global digital 

elevation model (DEM) resulting from a collaborative effort led by U.S. Geological Survey's 

EROS Data Center. Elevations in GTOPO30 are regularly spaced at 30-arc seconds 

(approximately 1 kilometre in Europe). 

 

3.5 Precipitation data 

Spatial patterns of mean annual precipitation in Europe from the WorlClim database 

(http://www.worldclim.org/) were used in this study. WorldClim is a set of global climate 

layers (climate grids) with a spatial resolution of a square kilometre. Although the 

precipitation data are not very accurate over the Alps, they were used here to demonstrate the 

feasibility of the approach.  
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4. Results  

4.1 Fingerprints  

Figures 5 – 8 show the fingerprints obtained with the parameters of Table 1 and the data 

summarised in section 3 of this report. In all the figures, red relates to low values of the 

fingerprints and blue relates to large values. This means that the red pixels will contribute to 

small values of local soil moisture, provided the process is considered to be operative in this 

pixel according to Table 1. Similarly, the blue pixels will contribute to large local soil 

moisture if applicable. The pattern of the ξ'1 fingerprint in Figure 5 represents the saturation 

excess runoff generation process controlled by mean annual precipitation and terrain 

curvature. The mountain ranges feature large local soil moisture values because of generally 

high precipitation and large curvatures in the valleys. The pattern of the ξ'2a and ξ'2b1 

fingerprints in Figure 6 represents the infiltration excess runoff generation process controlled 

by soil texture. Red indicates coarse soils, blue indicates fine soils. In particular fluvial gravel 

deposits appear as coarse patterns in the map which will translate into low local soil moisture 

values. The pattern of the ξ'2b2 fingerprint in Figure 7 represents water logging or ponding 

processes controlled by terrain curvature. The difference between Figure 7 and Figure 5 

illustrates the effect of precipitation on local soil moisture. The combined fingerprint ξL is 

shown in Figure 8. It has features of all components. The terrain characteristics are 

particularly visible. Part of the area such as former Yugoslavia has no data (shown as yellow), 

as no soil depth information was available in these areas. Figure 8 is the static fingerprint 

pattern ξL. The pattern could be straightforwardly extended to dynamic fingerprints if more 

information was available such as antecedent rainfall during the week before the soil moisture 

data were collected.  
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Figure 5: Pattern of the ξ'1 fingerprint component representing saturation excess runoff 
generation processes related to lateral flow in the soil. Colour range is from red to blue.  
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Figure 6: Pattern of the ξ'2a and ξ'2b1 fingerprint components representing infiltration excess 
runoff generation processes related to vertical flow in the soil. Colour range is from red to 
blue, i.e., red indicates coarse soils, blue indicates fine soils. 
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Figure 7: Pattern of the ξ'2b2 fingerprint component representing water logging or ponding 
processes when the groundwater table rises to the surface. Colour range is from red to blue. 
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Figure 8: Pattern of the combined and normalised fingerprint ξL. Colour range is from red to 
blue.  
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4.2 Spatial variance for a random field 

In order to test the downscaling model, a hypothetical large-scale soil moisture field RΘ  was 

generated by randomly drawing soil moisture values from a normal distribution with zero 

mean and unit variance. One such realisation has been used to calculate the large scale spatial 

standard deviation Rσ  from subregions of 5x5 large-scale pixels. This means that the domain 

over which the standard deviation was calculated is 125 x 125 km which produces the rather 

smooth pattern in Figure 9. The small scale spatial standard deviation Lσ  was then estimated 

from the large scale spatial standard deviation using scaling theory and is shown in Figure 10. 

The colour scales are not shown in the figure but the actual values of the local standard 

deviations in Figure 10 are about 80% larger than the regional standard deviations in Figure 9 

because of the scale effect.  
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Figure 9: Large scale spatial standard deviation Rσ  of soil moisture estimated from 
subregions of 5x5 large-scale pixels for a random field (see Figure 11). Colour range is from 
red to blue.  
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Figure 10: Small scale spatial standard deviation Lσ  of soil moisture estimated from the large 
scale spatial standard deviation (Figure 9) using scaling theory. Colour range is from red to 
blue. 
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4.3 Downscaling results for a random field 

As mentioned above, a hypothetical large-scale soil moisture field RΘ  was generated by 

randomly drawing soil moisture values from a normal distribution with zero mean and unit 

variance, in order to test the downscaling model. The realisation used in Figure 9 for 

calculating Rσ  is shown in Figure 11. As the field was assumed to be fully random, no spatial 

correlations exist. This is a rigorous test of the downscaling method in terms of its spatial 

characteristics, as the spatial correlations present in the scatterometer data will lead to a more 

robust result than the one to be expected from a random field. Figure 12 shows the result of 

downscaling the random field. The spatial pattern is a mix of the large scale soil moisture 

imposed by Figure 11 and the fine scale pattern imposed by the fingerprint of Figure 8. It 

exhibits the spatial variance to be expected from the scaling theory and the spatial mean is 

consistent with that of the scatterometer data due to the unbiasedness constraint. The fine 

scale pattern of the downscaled image is related to topography, soils and climate as modelled 

by the hydrological process types of Figure 2. Some of the regular patterns at the large pixel 

scale present in Figure 11 are expected to disappear if the large scale pattern is autocorrelated 

as is the case with the scatterometer data.  
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Figure 11: Random field of large scale soil moisture RΘ . Colour range is from red to blue, 
i.e., red indicates dry soils, blue indicates wet soils.  
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Figure 12: Small scale soil moisture LΘ  downscaled from RΘ  in Figure 11 using the 
hydrological downscaling approach. Colour range is from red to blue, i.e., red indicates dry 
soils, blue indicates wet soils. 
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Figure 13: Details from Figures 11 and 12. Top: Random field of large scale soil moisture 

RΘ . Bottom: Small scale soil moisture LΘ  downscaled from RΘ . Colour range is from red to 
blue, i.e., red indicates dry soils, blue indicates wet soils. Map shows the Alpine range in the 
centre. 
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4.4 Downscaling results for scatterometer data 

To demonstrate the feasibility of the hydrological downscaling approach it was applied to 

ERS scatterometer data. The downscaling approach was also tested for plausibility, so dates 

were selected when the downscaled soil moisture could be compared with ENVISAT data. 

While the ERS scatterometer data are at a resolution of about 25 km, the ENVISAT data are 

at a resolution of 1 km, so they allow an assessment of the downscaling method. However, the 

ENVISAT data are difficult to interpret quantitatively. The comparison should hence be 

viewed in terms of the spatial patterns rather than in quantitative terms.  

To better assess the capabilities of the hydrological downscaling method, an alternative 

method was also applied in which the small-scale soil moisture field LΘ  was estimated from 

the large-scale soil moisture field RΘ  by adding random noise. The rationale of this is that 

this random downscaling method better represents the local scale variance than the original 

image but will not be able to represent the fine scale patterns. The comparison between the 

hydrological and random downscaling methods hence allows to assess the degree to which the 

hydrological approach can capture the fine scale patterns of soil moisture. 

Figures 14 to 23 show the comparison of the methods. In each figure, (a) presents the 

regional-scale soil moisture field RΘ  based on the ERS scatterometer data; (b) presents a 

local-scale soil moisture field using the random downscaling; (c) presents the local-scale soil 

moisture field LΘ  using the hydrological downscaling; and (d) presents the ENVISAT data 

for comparison. Additionally, some of the figures show details of the Europe-wide images. As 

the dates have been selected to maximise the spatial match of the ERS scatterometer and the 

ENVISAT data, the distribution of the data within Europe is quite inhomogeneous.  

Figures 14 to 23 suggest, that the hydrological downscaling indeed gives plausible results. 

The spatial pattern is a mix of the large scale soil moisture and the fine scale pattern imposed 

by the fingerprint of Figure 8. It exhibits the spatial variance to be expected from the scaling 

theory and the spatial mean is consistent with that of the scatterometer data due to the 

unbiasedness constraint. The fine scale pattern of the downscaled image is related to 

topography, soils and climate as modelled by the hydrological process types of Figure 2. The 

regular patterns at the large pixel scale present in Figure 11 indeed disappear since the large 

scale scatterometer data are autocorrelated in space.  
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Figure 14a: Regional ERS scatterometer soil moisture – 2006-12-31 
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Figure 14b: Random downscaling - ERS scatterometer soil moisture – 2006-12-31 
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Figure 14c: Hydrological downscaling - ERS scatterometer soil moisture – 2006-12-31 
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Figure 14d: Local ENVISAT soil moisture – 2006-12-31 
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Figure 15: (a) Regional ERS scatterometer soil moisture, (b) Random downscaling – 2006-
12-31 – detail Slovakia, Hungary 

b) 

a) 
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Figure 15: (c) Hydrological downscaling of ERS scatterometer soil moisture, (d) ENVISAT 
soil moisture – 2006-12-31 – detail Slovakia, Hungary 

d) 

c) 
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Figure 16a: Regional ERS scatterometer soil moisture – 2006-08-22 
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Figure 16b: Random downscaling - ERS scatterometer soil moisture – 2006-08-22 
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Figure 16c: Hydrological downscaling - ERS scatterometer soil moisture – 2006-08-22 
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Figure 16d: Local ENVISAT soil moisture – 2006-08-22 
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Figure 17: (a) Regional ERS scatterometer soil moisture, (b) Random downscaling – 2006-
08-22– detail Austria, Hungary 

b) 

a) 
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Figure 17: (c) Hydrological downscaling of ERS scatterometer soil moisture, (d) ENVISAT 
soil moisture – 2006-08-22– detail Austria, Hungary 
 

d) 

c) 
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Figure 18a: Regional ERS scatterometer soil moisture – 2006-07-12 
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Figure 18b: Random downscaling - ERS scatterometer soil moisture – 2006-07-12 
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Figure 18c: Hydrological downscaling - ERS scatterometer soil moisture – 2006-07-12 
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Figure 18d: Local ENVISAT soil moisture – 2006-07-12 
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Figure 19: (a) Regional ERS scatterometer soil moisture, (b) Random downscaling – 2006-
07-12 – detail Spain 

b) 

a) 
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Figure 19c: Hydrological downscaling of ERS scatterometer soil moisture – 2006-07-12 – 
detail Spain 
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Figure 20: (a) Regional ERS scatterometer soil moisture, (b) Random downscaling – 2006-
07-12 – detail Slovakia, Hungary 

b) 

a) 
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Figure 20: (c) Hydrological downscaling of ERS scatterometer soil moisture, (d) ENVISAT 
soil moisture – 2006-07-12 – detail Slovakia, Hungary 

d) 

c) 
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Figure 21a: Regional ERS scatterometer soil moisture – 2006-02-19 
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Figure 21b: Random downscaling - ERS scatterometer soil moisture – 2006-02-19 
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Figure 21c: Hydrological downscaling - ERS scatterometer soil moisture – 2006-02-19 
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Figure 21d: Local ENVISAT soil moisture – 2006-02-19 
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Figure 22: (a) Regional ERS scatterometer soil moisture, (b) Random downscaling – 2006-
02-19 – detail Northern Spain 

b) 

a) 
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Figure 22: (c) Hydrological downscaling of ERS scatterometer soil moisture – 2006-02-19 – 
detail Northern Spain 
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Figure 23: (a) Regional ERS scatterometer soil moisture, (b) Random downscaling – 2006-
02-19 – detail Slovakia, Poland 

b) 

a) 
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Figure 23: (c) Hydrological downscaling of ERS scatterometer soil moisture, (d) ENVISAT 
soil moisture – 2006-02-19 – detail Slovakia, Poland 

d) 

c) 
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4.5 Correlations with ENVISAT ASAR data 

For a more quantitative assessment, the downscaled soil moisture patterns from the ERS 

Scatterometer were correlated with the ENVISAT data for each day individually. A 

correlation coefficient close to unity implies that the spatial patterns of the downscaled soil 

moisture and the ENVISAT data are similar. However, the correlations do not give 

information on the absolute values or the overall spatial variance of the downscaled pattern. 

Since the ENVISAT data are rather noisy, the correlations were performed for the average 

soil moisture values over 5 x 5 km areas.  

The results for those four days when the spatial overlap between ERS-Scatterometer soil 

moisture and ENVISAT data was largest are presented in Table 2. These are the dates also 

shown in Figures 14 - 23. For July 12, 2006, using the original (regional scale) scatterometer 

data gives a correlation coefficient of 0.241 with the ENVISAT data. Using the random 

downscaling method decreases the performance slightly to a correlation coefficient of 0.217. 

However, using the hydrological downscaling method increases the performance slightly to a 

correlation coefficient of 0.248. For the other dates in Table 2, the hydrological downscaling 

gives slightly lower correlations than the original scatterometer data. This would be expected 

as the lack of small scale variability tends to favour variance measures such as the correlation 

coefficient. However, the hydrological downscaling method is consistently better than the 

random downscaling which adds credence to the plausibility of the method.  

The correlation coefficient for all the days examined are shown in Figure 24. Each point 

relates to one day. Figure 24a gives the comparison of the correlation coefficients between 

regional scatterometer soil moisture and ENVISAT data with the correlation coefficients 

between hydrologically downscaled scatterometer soil moisture and ENVISAT data. Overall, 

the correlations with the hydrological downscaling methods tend to be slightly lower than 

those for the original scatterometer soil moisture, but the differences are very small.  

Figure 24b gives the comparison of the correlation coefficients between randomly 

downscaled scatterometer soil moisture and ENVISAT data with the correlation coefficients 

between hydrologically downscaled scatterometer soil moisture and ENVISAT data. On most 

days, the correlations of the hydrological downscaling are higher than those of the random 

downscaling, indicating that the downscaling method proposed here does have predictive 

performance.  
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Table 2: Correlation coefficients between various downscaling variants of ERS Scatterometer 
soil moisture and ENVISAT data. The dates correspond to those indicated by circles in Figure 
24.  

Correlation coefficient  
Date of  

acquisition 

Number of  
overlapping 

grid cells 
Regional (no 

downscaling) – 
ENVISAT   

Random 
downscaling – 

ENVISAT 

Hydrological 
downscaling – 

ENVISAT  

2006-07-12 367035 0.241 0.217 0.248 

2006-02-19 213407 0.823 0.790 0.806 

2006-12-31 169322 0.841 0.823 0.842 

2006-08-22 137454 0.455 0.408 0.440 
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Figure 24: Performance of the downscaling methods: The vertical axes show the correlation 
coefficients between hydrologically downscaled ERS scatterometer soil moisture and 
ENVISAT data. The horizontal axes show (a) the correlation coefficients between regional 
ERS scatterometer soil moisture and ENVISAT data, and (b) the correlation coefficients 
between randomly downscaled ERS scatterometer soil moisture and ENVISAT data. Each 
point represents the spatial correlation on one day during 2005 to 2007. Colours indicate the 
number of grid elements with overlap and circles indicate the dates shown in Figures 13 - 23. 
Only days with significant overlap are shown. 

b) 

a) 
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5. Conclusions 

There are two main outcomes from this project. The first is a new method that allows the 

downscaling of ERS scatterometer data to a spatial scale of 1 km that is more useful for 

hydrological applications. The method is based on hydrological indices and uses a minimum 

amount of data, so should be applicable to operational purposes.  

The second outcome is information on how accurate the hydrological downscaling method is, 

as compared to using the original scatterometer data and to using a random downscaling 

method. The hydrological downscaling method gives indeed plausible patterns. They are 

better correlated to ENVISAT data than are the random downscaling results, but the 

correlations are slightly lower than those of the original scatterometer data. The latter result, 

however, does not imply that the original scatterometer data would be more suitable for 

hydrological applications as they lack small scale detail which is essential for hydrological 

applications.  

The results demonstrate the feasibility of the method which will likely increase the potential 

of existing soil moisture scatterometer retrieval procedures developed as part of the H-SAF 

project, in particular for hydrological applications. However, it is suggested that more work is 

needed on examining the robustness of the method and on identifying optimum parameters of 

the conceptual hydrological model (Table 1). As the fingerprints are stationary they could also 

be used for downscaling average soil moisture values, e.g., soil moisture averaged over a 

number of years. Alternatively, the fingerprints can be straightforwardly extended to represent 

antecedent rainfall during the day before the soil moisture data were collected which would 

lead to a dynamic downscaling method. 
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