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3 ACRONIMS AND ABBREVIATIONS  

 
AMSU Advanced Microwave sounding Unit 
ANN  Artificial Neural Network  
BT  Brightness temperature [K] 
CDRD Cloud Dynamics and Radiation Database 
DMSP Defense Military Satellite Program 
GPROF  Goddard Profiling Algorithm 
H-SAF:  Satellite Application Facility on Support to Operational Hydrology and Water Management 
HPs  Hypothesis 
IFOV  Instantaneous Field Of View  
LST  Local Solar Time 
MHS  Microwave Humidity Sounder 
MSG  Meteosat Second Generation 
MTG  Meteosat third Generation 
NRLT  Naval Research Laboratory Technique 
PDF  Probability density function 
PMW  Passive MicroWave 
PNPR  PMW-Neural Network Precipitation Retrieval  
RH03  Rain rate [mm/h] from H03 product 
RMSE Root Mean Square Error 
RTMI  Rain rate [mm/h] from TRMM Microwave imager 2A12 v7 product 
RTPR  Rain rate [mm/h] from TRMM Precipitation radar 2A25 v7 product 
SEVIRI Spinning Enhanced Visible and Infrared Imager 
SSMIS Special Sensor Microwave Imager-Sounder 
TMI  TRMM Microwave Imager 
TPR  TRMM Precipitation Radar 
TRMM Tropical Rainfall Measuring Mission 
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4 INTRODUCTION 
This report summarizes the work carried out within the HSAF visiting scientist activity (ref. H- 

SAF_VSA_13_04) and provide a whole picture of the performance of HSAF rain product during the 12 months 
period between June 2012 and May 2013, over the North African and Mediterranean territory. Among the existing 
HSAF rain products, a prototype of the infrared based PR-OBS-03 also known as “H03” is tested. H03 is a blended 
product that combines infrared observations and microwave rain rate estimations, thus taking advantage of the 
higher temporal sampling of geostationary infrared sensors and the penetration capabilities of microwaves. 

The score evaluation of H03 has a more practical impact for hydrological purpose where higher temporal 
sampling is required for temporal tracking of rain accumulations. For the reason mentioned above, among the 
various HSAS rain products, we focused our attention on H03. 

Given the scarcely dense network of ground stations in Africa, the difficult to get access to field campaign data 
that occurred in past years in Africa and the lack of detailed data quality documentation in that area, (see Montopoli 
VS report for task n.1), we decided to deal with the validation using TRMM data and in particular the rain products 
from TRMM Microwave Imager (TMI, 2A12 v7) and the TRMM-Precipitation radar (TPR, 2A25 v7). The good 
level of interdependencies among H03, TMI and TPR, due to the different nature of the sensors used and their 
different rain rate retrieval algorithms, allowed performing validation both in dual and triple colocation mode. 
While the former is the standard way to compare couple of dataset choosing one of the two as truth, the latter way 
is a tool that does not require choosing a “true” source for the comparison. However, even though the triple 
colocation technique can be considered as a new approach in the HSAF program, it requires several hypotheses to 
work properly which validity is not always easy to check. A detailed appendix and formulation on the triple 
colocation basics is given through the main text.  

Overall results indicate a systematic underestimation of the prototype H03 rain rate even though this has less 
impact on stratiform then convective rain regimes. The strength of the H03 underestimation error varies too as a 
function of the dual or triple colocation approach as well as by spatial scale of analysis. Recently introduced quality 
index of H03 product is also taken into account in the validation analysis. Results showed that is has a little impact 
on the error score considered while it does not bring benefit on the quality of the skill scores (e.g. probability of 
detection and false alarms). 

 
5 OBJECTIVES  

Among the operational goals of H-SAF there is the need to assign a measure of accuracy to the developed 
products. This is a crucial step to help the final users to fruitfully interpret the advantages and drawbacks of the H-
SAF operational products.  

The measure product accuracy is something related with error structure analysis. In our context, the error is 
defined as a measure of the discrepancy (i.e. a difference or a ratio depending if the error is thought to be 
multiplicative or additive) between the H-SAF operational products of rain precipitation (i.e. the satellite rain 
retrievals considering their various versions and degree of complexity) and independent reference records of rain 
precipitation not directly involved in the H-SAF product build-up (usually from punctual rain gauges or ground 
weather radar or other satellite active/passive observations). 

Within the aforementioned context this reports has two main objectives as follows: 
 
Objective 1: Evaluate the error structure to be associated to a prototype of H03 products. 
 
Objective 2: Provide the algorithm developers with a benchmark for future rain product’s developments and 

refinements.  
 
Objective 3: Investigate the complexity, reliability and practical implementation of the triple colocation 

methodology for error score evaluation. 
 

6 HSAF AND TRMM RAIN PRODUCTS 
 
This section gives a synthetic description of the HSAF and TRMM rain products involved in this analysis. Each 

subsection refers to a specific rain product with a clear indication of input and output quantities, spatial and 
temporal sampling properties and algorithm principles. 
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6.1 H-SAF PR-OBS1 PRODUCT (H01) 

6.1.1 Input observations and output quantities 
Inputs: Currently PR-OBS1 makes use of PMW observations from SSMIS. SSMIS is a conically scanning 

microwave radiometer flying on DMSP satellites F16/F17/F18 series at 833 km altitude with available channels 
[GHz/polarization]: 9.35/H–V; 22.235/V; 37/H–V; 50.3/H; 52.8/H; 53.596/H; 54.4/H; 55.5/H; 57.29/RC; 59.4/RC; 
60.792668 ± 0.357892/RC; 60.792668 ± 0.357892 ± 0.002/RC; 60.792668 ± 0.357892 ± 0.0055/RC; 60.792668 ± 
0.357892 ± 0.016/RC; 60.792668 ± 0.357892 ± 0.05/RC; 63.283248 ± 0.285271/RC; 91.655 ± 0.9/H-V; 150 ± 
1.25/H; 183.31 ± 1/H; 183.31 ± 3/H; 183.31 ± 6.6/H 

PR-OBS1 makes use of a predefined database of possible retrievals (i.e. profiles and surface rain intensities). In 
order to reduce ambiguity in the PR-OBS1 retrievals, other geophysical inputs guide the algorithm towards 
selecting database members that are most representative of an observed scene. They are, in the general scheme, 
seven: (1 and 2) vertical velocities at 700 and 500hPa; (3) equivalent potential temperature at surface; (4) 
convective available potential energy; (5) moisture flux 50 hPa above surface; (6) freezing level height; and (7) 
surface height. 

Outputs: instantaneous surface precipitation rate [mm/h] and its phase flag [liquid, frozen, mixed or unknown]; 
vertical profiles of microphysical species 2-water/4-ice consisting of mixing ratio (q) profiles of cloud droplets 
(qc), rain drops (qr), pristine crystals (qi), snow pellets/flakes (qs), ice aggregates (qa), and graupel/hail particles 
(qg ); 

6.1.2 Spatial, temporal sampling and coverage 
 
Spatial horizontal resolution:  13.2 ×	
 15.5 km2 deconvolved, (30 ×	
 30 km2 original). 
Temporal sampling (mid latitudes)*:  minimum 2 times a day (with 1 sat.); maximum: 6 times a day (with 3 sat.) 
     Descending overpasses at approximately 05:30, 05:50 and 08:10 (LST).  
     Ascending overpasses at approximately 17:30, 17:50 and 20:10  (LST).  
Coverage:     H-SAF area [25 N–75N] latitude, [25W–45E] longitude 
Future Coverage:    Full disk [65 N–65N] latitude, [65W–65E] longitude 
 
(*) Note that since the radiometer scan swaths extend over more and more time zones, as latitude increases in 

either hemisphere, the actual local times at which a given location on the earth’s surface is observed by a given 
radiometer may change considerably (even hours). 

6.1.3 Algorithm synthetic description 
The PR-OBS-1 product is based on a new methodology, which is founded on the Cloud Dynamics and 

Radiation Database methodology (CDRD) and the Bayesian solution method for the retrieval of precipitation. 
CDRD represents a modified and improved methodology applied to the Cloud Radiation Database (CRD) 
originally developed by Smith et al. 1992.  

The key issue concerning CRD-type algorithms is that it is likely to produce ambiguous solutions. In the CRD 
process of obtaining a solution, an individual observed radiometer BT vector must be compared to the entire set of 
simulated BTs in the knowledge CRD database. This is done in order to select candidate microphysical profile 
solutions (which may include all profiles in the database) based on the proximity of the modeled BT vector 
quantities to the corresponding measured BT vector quantity. The ambiguity stems from the fact that multiple 
solutions are possible because different vertical profile structures of microphysical hydrometeors can lead to 
exactly or nearly exactly the same BT vector. 

The novelty in the CDRD methodology is the use of additional parameters that better isolate candidate profile 
solution subsets used by the CDRD algorithm’s Bayesian solver to acquire unique solutions. The additional 
parameters used in CDRD are optimal metrological and geophysical variables (also refereed as tags). The specific 
meteorological-geophysical tags have been chosen from those produced by the underlying cloud resolving model, 
but with a restriction that they must have direct counterparts in the observational world such that the same 
procedure used on the BT vectors involving proximity testing can be employed with the meteorological-
geophysical tags when seeking to constrain the algorithm solution subsets 

The metrological and geophysical variables tags are used to refine the selection of the candidate microphysical 
profiles (i.e. the possible solutions) used for the Bayesian retrieval. Then, the essence of CDRD is that it uses the 
optimal meteorological-geophysical parameter tags to assist in the process of guiding the algorithm in finding 
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microphysical profile precipitation solutions that are congruent with the environments encompassing the satellite 
BT measurements used in the retrievals. 

In the CDRD framework, the measured optimal meteorological constraint parameters are obtained from NOAA’s 
National Centers for Environmental Prediction (NCEP) Global Forecast System (NCEP-GFS) or from ECMWF’s 
operational forecast model, whereas the modeled set of optional tags are obtained from the model simulations used 
to populate the CDRD. 

While the use of an only CRD framework (i.e. BT guidance only) leads to pervasive non-uniqueness problems in 
finding rainfall solutions, in the CDRD framework (TB + tag guidance) mitigates against non-uniqueness problems 
through improved environmental constraints. Thus, the main objective in migrating from the CRD to CDRD design 
has been to reduce non-uniqueness effects that have affected the CRD schemes. Basically, in the CDRD scheme the 
candidate profiles, which are found to be not consistent with the ambient environmental conditions for given 
observational situations, are discarded (Casella et al. 2013). Constrain the possible solutions to a restricted subset is 
introduced to mitigate the ambiguities that would otherwise arise in the precipitation retrieval. 

An integral part of the CDRD algorithm is a precipitation-screening scheme used to determine if precipitation 
exists in a given IFOV before the Bayesian solver is invoked. This is done to avoid an outcome of the solver 
producing nonzero positive values of surface precipitation rate even when precipitation does not actually exist in 
the IFOV. 

6.2 H-SAF PR-OBS2 PRODUCT (H02) 

6.2.1 Input observations and output quantities 
Inputs. Currently PR-OBS2 makes use of PMW observations from AMSU-A and MHS. The channel used from 

AMSU-A are [GHz±Δf]: 50.3 ± 50, 52.8 ± 105, 53.596 ± 115 where ±Δf represents double symmetric sideband 
frequency positions whereas the MHS channels used are [GHz±Δf]: 89 ± 0.9, 150 ± 0.9, 183.31 ± 1, 183.31 ± 3, 
183.31 ± 7. 

In order to reduce ambiguity, other geophysical inputs (i.e., latitude, terrain height, surface type, season) guide 
the algorithm towards selecting training members that are most representative of an observed scene. Additionally, 
Pixel/scan geometry factors are taken as input for limb smearing compensation due to the variation of the cross 
track view angles of AMSU and MHS. 

Outputs. Surface precipitation rate [mm/h] and its phase flag [liquid, frozen, mixed or unknown]; the quality 
index for each pixel [assigned as poor, fair, good or unknown]. 

 

6.2.2 Spatial, temporal sampling and coverage 
- Spatial horizontal resolution:  26 × 52 km2 (at scan edge), 16 × 16 km2 (at nadir). 
- Temporal sampling:    minimum of 8 distinct times (i.e., twice before 01:30 LST, twice before  

     09:30 LST, twice after 13:30 LST and twice after 21:30 LST). 
- Current Coverage:    H-SAF area [25 N–75N] latitude, [25W–45E] longitude 
- Future Coverage:    Full disk [65 N–65N] latitude, [65W–65E] longitude 

 

6.2.3 Algorithm synthetic description 
PR-OBS2 is based on the PMW-Neural Network Precipitation Retrieval (PNPR) algorithm. The PNPR 

algorithm is based on a new optimal three-layers Artificial Neural Network (ANN), which is trained using the 
database from the same numerical model simulations and the same radiative transfer system that are used for 
populating the CDRD (Casella et al. 2013). 

It is worth noting that while the CDRD algorithm for the PR-OBS1 product uses its database repeatedly to obtain 
a priori potential solution profiles for its Bayesian solver, the PNPR algorithm, used for PR-OBS2, uses the 
database only once during the training process. Another aspect to note is the consistency between PNPR and 
CDRD approach since they make use of the same a priori information (i.e. the same database of microphysical 
profiles) to develop the functional relationships needed between the inputs (i.e., TBs, geographical/seasonal factors, 
pixel view angle) and the output retrievals (i.e., surface precipitation rate, phase flag). 

The use of an ANN solver relies on its convenient application when dealing with cross-track scanning 
radiometers. This is because in the cross-track scanning strategies the view angle is continuously changing 
introducing view angle-dependent scenes. This would be an additional degree of freedom when using the CDRD 
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and Bayesian approach that leads to systematic errors. When view-angle dependent errors enter the Bayesian 
retrievals, they complicate how systematic error should be expressed and impose a reduced confidence in 
formulating Bayesian probabilities. It has been found (Casella et al. 2013) that an ANN is able to overcome some 
of the view angle-dependent uncertainties at the expense of less physics based retrieval. However, to reduce its 
uncertainty the ANN is trained to a variety of cross-track scanning angles implying that a given cloud structure 
must be associated to several BT vectors (one or each of the scan radiometer view angles). This introduce an 
additional complexity in the PNPR training database since it has to be larger than that used in the CDRD case. 
Thus, the correspondence between BT vectors, along with their associated hydrometeor structures and surface 
precipitation rates, is complicated by the dependence of spatial resolution along a radiometer scan due to the 
varying view angle. 

 

6.3 H-SAF PR-OBS3 PRODUCT (H03) 

6.3.1 Input observations and output quantities 
Input. Infrared BTs at 10.8 µm from GEO MSG SEVIRI satellite and rain intensity estimations from PMW 

satellite sensors is used as input. 
Output. Map of rain rate [mm/h]. 

6.3.2 Spatial, temporal sampling and coverage 
- Spatial horizontal resolution: variable from approx. 8 × 8 and 3.5 × 3.5 km2  
- Temporal sampling:   Every 15 min 
- Current Coverage:   H-SAF area [25 N–75N] latitude, [25W–45E] longitude 
- Future Coverage:   Full disk [65 N–65N] latitude, [65W–65E] longitude 

6.3.3 Algorithm synthetic description 
The standard PR-OBS3 algorithm combines the temporally-rich information from the SEVIRI infrared (IR) 

geostationary observations together with the more quantitative, but less frequent, rainfall information from the 
passive microwave polar orbiting satellites (i.e. H-SAF from the products PR-OBS1 and PR-OBS2). 

The infrared and PMW observations are blended using the probability matching technique. The probability 
matching approach used for PR-OBS3 was originally developed at the US Naval Research Laboratory (NRL) and 
therefore it is referred to as NRL Technique (NRLT).  

The probability matching aims to find a relationship y=f(x) to convert (or calibrate) a variable “x” into another 
one “y” imposing that the histograms of x and y are equal. In our case x=BT [K] at IR and y=R rain rate in [mm/h] 
estimated from PMW instruments. Thus, it is essential to have enough samples of x and y to built their histograms 
in a robust way. For this reason the choice of the spatial and temporal domain for the IR-PMW combined approach 
is a critical factor. For example, instantaneous calibrations based upon nearly coincident IR-PMW reflect the 
change in calibration over shorts periods. However, the use of instantaneous calibration would result in a relatively 
few data pairs and consequently a larger spatial domain is required to ensure an adequate sampled-size.  

The NRLT processing is triggered as soon as a new slot of SEVIRI data at 10.8 µm is available. As a second step, 
the identification of the PMW measurements coincident in time and space with the TBs at 10.8 µm of the currently 
processed SEVIRI image is performed. The coincident data are subsequently located in a geographical 
latitude/longitude grid, and for each grid box the histogram of the IR BTs and that of the corresponding PMW rain 
rates are built and then combined by means of a probabilistic histogram matching technique (Calheiros and 
Zawadzki, 1987) to produce geo-located IR-BT vs. PMW rain-rate relationships. These relationships are then used 
to assign a rainfall intensity value to each SEVIRI pixel. As soon as a grid box is refreshed with new data, the 
corresponding relationship is renewed using updated IR-TB and PMW rain-rate histograms. Relationships older 
than 24 h with respect to the acquisition time of the IR TB are considered unreliable and consequently no rainfall 
intensity values are assigned until a refresh of the relationship is done.  

The key point of this technique is thus to provide instantaneous rainfall estimations at the GEO spatial and 
temporal scales, which are consistent with the nature and development of the precipitating cloud systems, by 
overcoming the scarcity of PMW overpasses with the more frequent GEO slots and the weak connection between 
the rain intensity and IR BTs with the calibration of the IR BTs by the PMW rain rates. Note that in order to apply 
the IR-PMW blending, PR-OBS1 or PR-OBS2 or both can be used to feed the PR-OBS3 algorithm.  
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6.4 TRMM –TMI 2A12 RAIN PRODUCT (TMI) 

6.4.1 Input observations and output quantities 
Input: Microwave BTs at 10.7, 19.4, 21.3, 37.0 85.0 GHz and polarization H and V from TRMM satellite. 
Output: Map of rain rate [mm/h] on the TRMM-TMI swath, land coverage map, rain quality map. 

6.4.2 Spatial, temporal sampling and coverage 
- Spatial resolution:  variable with channels from ~6×8 km2 at 85 GHz to ~72×43 km2 at 10.7 GHz. On 

    average it is approximately:	
 12 × 12 km2. 
- Temporal sampling:   16 orbit per day, 92.5 minutes per orbit with a swath of 878 km (post burst). 
- Current Coverage:   [38 S–38N] latitude, [180W–180E] longitude 

6.4.3 Algorithm synthetic description 
The TRMM Microwave Imager (TMI) passively collects rain information using nine channels at five microwave 

frequencies: 10.7, 19.4, 21.3, 37.0 and 85.5 GHz. The 21.3 GHz is the only channel that is not dually polarized 
(only the vertical channel is available at 21.3 GHz). Over land, the TMI rain algorithms only rise rain information 
from the two 85.5 GHz "scattering" channels. The lower frequency channels more directly probe the precipitable 
water in the lower regions of the cloud, but over land these channels become contaminated by variations in the 
microwave emissions from the earth's surface (i.e., non-homogeneous background). Spencer (1989), Conner and 
Petty (1998) and others have shown that the high frequency scattering channels are correlated with surface rain 
rates and so can be used as an estimator of rain rate, but since the rain information is communicated by ice-
scattering processes occurring above the freezing layer, the relationship between brightness temperature and rain 
rate is more uncertain and is sensitive to the specific characteristics of the observed rain system. Instantaneous TMI 
rain rates are generated using the Goddard Profiling Algorithm (GPROF) (Kummerow et al 2001). The algorithm 
has continued to evolve and significant improvements to the algorithm are described in Ryu, et, a1., (2010) and 
Olson et al. (2006). The horizontal effective field of views of the TMI sensor varies as a function of channel’s 
frequencies GHz/(km2) = 10.7/ (72×43), 19.4/(30×18), 21.3/(23×18), 37.0/(16×19) and 85.5/(8× 6) (values refer to 
post-boost conditions in 2001). The TMI footprint in the Level II rain products is about 150 km2 (Wolff and Fisher 
2008); however, TMI rain rates are determined from passive microwave radiances collected at five different 
frequencies, which span a broad range of geo- physical scales and collectively probe the brightness temperature 
structure of the atmosphere at different depths. The Level II TMI footprint cannot therefore be thought of as 
representing a fundamental physical scale, but rather results from an empirical optimization of the rain information 
covering several different geophysical scales (Olson et al. 2006). 

GPROF uses a Bayesian approach to match the observed brightness temperatures from a pixel with those from a 
database of simulated hydrometeor profiles from cloud-resolving-model simulations, coupled with a microwave 
radiative transfer model. Over ocean, the usefulness of both emission and scattering channels allows the efficient 
use of a Bayesian method to select hydrometeor profiles in the database from the full suite of brightness 
temperatures, where the physics of the algorithm relies on both emission-based and scattering-based retrievals.   
Over land, only scattering frequencies are useful for rain estimation, which yields too little information to use a 
Bayesian profile selection technique in GPROF because of the high and variable microwave emissivity of land 
surfaces. Ice-scattering techniques have a major disadvantage in that they are inherently empirical because of the 
unknown phase, density, size distribution, shape, and orientation of the ice particles in the sample volume, as well 
as the empirical relationship used to relate the ice scattering optical depth aloft and the rain rate underlying the ice 
layer. 
The 2A-12 Version 7 product, "TMI Profiling", generates surface rainfall and vertical hydrometeor profiles on a 
pixel by pixel basis from the TRMM Microwave Imager (TMI) brightness temperature data using the Goddard 
Profiling algorithm GPROF2008. Because the vertical information comes from a radiometer, it is not written out in 
independent vertical layers like the TRMM Precipitation Radar. Instead, the output is referenced to one of 100 
typical structures for each hydrometeor or heating profiles. These vertical structures are referenced as clusters in 
the output structure. Vertical hydrometeor profiles can be reconstructed to 28 layers by knowing the cluster number 
(i.e. shape) of the profiles and a scale factor that is written for each pixel. 
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6.5 TRMM –TPR 2A25 RAIN PRODUCT (TPR) 

6.5.1 Input observations and output quantities 
Input:  TRMM-PR reflectivity [dBZ] 3D volumes at 13.8 GHz, freezing height from 2A23. 
Output:  Map of rain rate [mm/h] on the TRMM-PR swath, vertical profiles of reflectivity, rain regimes  
  classification. 

6.5.2 Spatial, temporal sampling and coverage 
- Spatial resolution:  5 x 5 km2.	
  
- Temporal sampling:   16 orbit per day, 92.5 minutes per orbit with a swath of 878 km (post burst). 
- Current Coverage:   [37 S–37N] latitude, [180W–180E] longitude 

6.5.3 Algorithm synthetic description 
The objective of the 2A25 product is to correct for the rain attenuation in measured radar reflectivity and to 

estimate the instantaneous three-dimensional distribution of rain from the TRMM PR (TPR) data. The estimates of 
attenuation-corrected radar reflectivity factor and rainfall rate are given at each resolution cell of the PR. The 
estimated near-surface rainfall rate and average rainfall rate between the two predefined altitudes (2 and 4 km) are 
also calculated for each beam position. 

Estimates of rain rate from PR require a means by which the radar signal attenuation can be corrected. One of the 
methods available is the surface reference technique in which the radar surface return in rain-free areas is used as a 
reference against which the path-integrated attenuation is obtained. Despite the simplicity of the basic concept, an 
assessment of the reliability of the technique is difficult because the statistical properties of the surface return 
depend not only on surface type (land/ocean) and incidence angle, but also on the detailed nature of the surface 
scattering. 2A25 basically uses the surface reference technique (Menegini et al., 2000) to estimate the total path 
loss of radar signal’s power due to rain attenuation and a hybrid of the Hitschfeld-Bordan method (Iguchi and 
Meneghini, 1994 and Menegini et al., 2004, 2013) to correct for the vertical true radar reflectivity (Z) profile. The 
vertical rain profile (R) is then calculated from the estimated true Z profile by using an appropriate Z-R relationship 
R=aZb. One major difference from the method described in Meneghini 1994 is that in order to deal with the 
uncertainties in measurements of the scattering cross section of surface as well as the rain echoes, a probabilistic 
method is used. 

 
 

7 STATE OF THE ART IN THE H-SAF RAIN PRODUCT VALIDATION 
In this section a review of recent literature and their achievements that involved the validation of HSAF 

precipitation products is discussed. Note that each author give different definition of error score (for example 
average root mean square error (RMS) is not the same as the average RMS), then the comparison among score 
error numbers from different works should be carefully done. Lastly, note that, so far all HSAF validation efforts 
have been done in a dual colocation mode which means that one retrieval is compared against the reference one 
which is assumed to be error free. 

7.1.1 Mugnai et al, 2013 
Mugnai et al., 2013b showed comparisons of retrievals from the CDRD algorithm (used in PR-OBS1) and those 

from TRMM TMI facility algorithm 2a12-v7 (also called GPROF) with the reference retrieval from the TRMM PR 
facility algorithm 2a25-v7. Retrievals from both algorithms GPROF and CDRD have been obtained throughout an 
annual cycle (2010) for the North Africa [25N–36N, 25W–45E].  

Results indicate that in a root mean square error (rmse) monthly framework,  
- Over ocean, CDRD (average rmse=1.24 mm/h) and GPROF (average rmse=1.27 mm/h) algorithms are 

nearly equivalent.  
- Over land, rainfall (nonsnowing surface conditions), the CDRD algorithm produces significant improvements 

(average rmse=2.94 mm/h) with respect GPROF (average rmse=3.42 mm/h) between 10 to 55 % depending 
on mean monthly rainfall accumulations, with an overall annual improvement of 16 %.  

- Over land, summer season show a slightly increase of the “rmse” with respect winter seasons. 
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- On an annual basis, the CDRD algorithm relative to the GPROF algorithm exhibits moderate improvements 
in correlation coefficient with respect to TRMM-PR retrievals for both land and oceanic rainfall (0.65 vs. 
0.60 and 0.59 vs. 0.54, respectively).  

- In summary it is apparent that the CDRD algorithm is competitive with GPROF for ocean applications, and 
provides a significant improvement for continental applications. More exhaustive tests are underway to 
corroborate this result. 

7.1.2 Sano et al. 2013 
Sano’ et al., 2013b Compared the CDRD (used in PR-OBS1) and its previous version (CRD) with rain radar 

retrievals. They used the Polar 55C Doppler C-band radar system at CNR/ISAC-Rome, converting the radar 
reflectivity into rain rate and using polarimetric variables to guarantee, with a sufficient accuracy, the calibration of 
the radar reflectivity. Two meteorologically distinct precipitation case studies in the Lazio region in the vicinity of 
Rome (land areas only) have been conducted to test the viability of the CDRD approach. The first case study (July 
2nd 2009) involves convectively intense thunderstorms producing heavy rainfall. The second one (November 4, 
2008) is a mix of convective and stratiform regimes. 

Results indicate that  
- For case study 1 (convective) RMSE and CorrCoeff are respectively 1.70 mm/h and 0.84 
- For case study 2 (convective/stratiform): RMSE and CorrCoeff are respectively 1.93 mm/h and 0.88 

7.1.3 Rinollo et al., 2013 
Rinollo et al., 2013 introduced the concept of quality index when dealing with radar measurements for validating 

satellite retrievals. In that work, the precipitation field derived by radar data was compared with the PR-OBS-3 
precipitation product, with varying thresholds of quality index. The impact of the introduction of the quality index 
was then evaluated.  The dataset considered for the validation study was consisting of 12 case studies, each of 1 
day, corresponding to relevant meteorological events of different seasons and precipitation regimes between 
summer 2009 and spring 2011. 

 Results showed that  
- PR-RMSE (a relative RMSE here introduced) is reduced from values between 2.5 and 3 to values around 1 

when the quality threshold is increased from 0 (no threshold) to 0.8. Fractional standard error also 
decreases, from values around 2 to values around 1.5 in the same span of the quality threshold. This can be 
interpreted as the signature of a strong impact of the radar data quality on the validation of satellite-based 
rainfall estimation using radar data as reference. 

7.1.4 Puca et al 2014 
Puca et al., 2014, analysed 1 year of data (July 2011 to June 2012) within the H-SAF European area using radar 

and gauge observations to make comparison with PR-OBS1, PR-OBS2 and PR-OBS3 products. Ground and 
airborne data have been spatially and temporally aliened using the temporal nearest neighbour approach and the 
spatial GRISO interpolator. GRISO was applied on gauge data to map them into a 5 x 5 km2 Cartesian regular grid.    

Continuous (RMSE, MAE, BIAS, CorrCoeff) and multy-category statistical scores (POD, FAR, CSI) were 
considered as validation indicators. In order to make validation comparison more robust, statistical scores were 
calculated using discretized rain precipitations into four or six rain classes depending if rain records are treated as 
instantaneous rate [mm/h] or accumulated rain [mm]. 

Results showed a  
- A better performance in the winter seasons with respect to the summer of PR-OBS-1-2-3 when compared to 

either radar or gauge observations. Rrmse, using radar in winter/summer for PR-OBS for i-th HSAF product 
in [mm/h] (RMSE_W/S_i) is RMSE_W/S_1= 1.05/2.77; RMSE_W/S_2= 0.90/1.53; RMSE_W/S_3= 
1.74/5.48;   

- A good capability of PR-OBS-1-2-3 to detect low values of rain rates as opposed to a bad performance to 
catch high precipitation levels. .  

Note:  The worse performance during the summer might be also due to the convective regime of the precipitation 
during that period. Convective cells might extend horizontally less that typical MW-IVOF causing Non Uniform 
Beam Filling effects. This is unlikely to happen during the winter where precipitation is more stratiform filling 
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the typical MW-IVOF in a way that is more homogeneous. Thus, would be interesting to investigate the role of 
NUBF introducing a MW-NUBF quality index in the validation analysis.  
 
 

8 METODOLOGY OF VALIDATION 
This section describes the methodology of validation adopted in this work. They are essentially: i) the dual 

colocation and ii) the triple colocation technique. Both methodologies will be applied to the same dataset of rain 
precipitation product form H03, TMI and TPR, previously collocated over the target area as explained in section 
8.3.  

8.1 DUAL COLOCATION 
The dual colocation (or dual comparison) is the usual way to make validations among different measurements of 

the same true (unknown) state. In this context, one measurement system is usually taken as reference and regarded 
as truth for the validation of the other measurement systems. This methodology has the limitation due to the fact 
that the reference system considered as truth has an unavoidable error that is not taken into account in the dual 
validation comparison. In fact, unfortunately, all observation systems contain errors. This means that we cannot 
assume that one measurement represents the true state and calibrate the other against it.  

For example, assume we have a distribution of "true" states indicated by the variable θ, with expected variance 
σ θ

2=<θ2> and two independent measurement systems x1 and x2, with error variances of σ2
δi=<(θ-xi)2> where i=1 or 

2 and the symbol “<!>” is the average operator. If the distribution of true values and the error distributions are 
normal, one can show that, for fixed x1, (which is, for example, the measurement assumed as reference for 
validation), the average of x2, which is the average of the measurements under validation, is not equal to the 
reference value x1, i.e.: <x2>≠x1, but it holds: <x2>= x1! σθ

2( σθ 
2+ σ2

δ1)-1 (see Stoffelen, 1998). Thus, only when the 
reference system (i.e. system 1 in our example) is error free (i.e. in the ideal case where σ2

δ1=0), we satisfy the 
condition <x2>= x1. In all the other (actual) cases, we have a pseudo-bias term represented by the quantity 
σθ

2( σθ 
2+ σ2

δ1)-1, that depends on σ2
δ1 which is the error characteristics of system x1. Thus the error contribution of 

the system assumed as reference bias the average of the system under validation.  
This example illustrates as for unbiased Gaussian error distributions, dual colocation may leads to a wrong error 

interpretation.  
However, dual colocation has an easy implementation, gives a quick whole picture of the measuring system 

performance and it allows to explicitly defining an “error” difference giving the possibility for the computation of 
several score indexes then facilitating the comparison with independent validation analysis. For the above 
mentioned reasons it is still worth to apply dual colocation methods with respect to triple colocation strategies 
which will be described in the next section. The score and erro indexes used in the dual colocation mode are listed 
in the next section below. 

8.1.1 Dual colocation score and error indexes 
The score indexes used in this work are here listed assuming two system under investigation which are:  
 
x1:  the measure of the reference system and  
x2: the measure of the the system under validation,  
 
which values are given at a space (s) and time (t) point, indicated by x1(s,t) and x2(s,t), respectively.  
 
Score indexes 
 
a(xth)= Number of samples for witch (x2 >xth & x1 >xth): Correct positive (Hit) 
b(xth)= Number of samples for witch (x2 >xth & x1 ≤xth): False 
c(xth)= Number of samples for witch (x2 ≤xth & x1 >xth): Miss 
d(xth)= Number of samples for witch (x2 ≤xth & x1 ≤xth):  Correct negative    
             ( 1) 
POD(xth)  = a/(a+c)    Hit rate or Prob. of Detection 
FAR(xth)  = b/(a+b)    False alarm rate  
PCD(xth)  = (a+d)/n    Prob. Of correct detection 
CSI(xth)  = a/(a+b+c)   Critical success index. 
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ETS (xth)  = a-h/(a+b+c+h)   Equitable treat score 
HSS(xth)  =  (a+d-h)/(n-h)   Heidke skill score    ( 2) 
 
Where xth and n is the threshold value and the total number of samples collected in the selected space-time 

domain, respectively, whereas h=(a+c)(a+b)/n.  
Equations for the above scores are taken from Ebert et al. (2007) and are here explained in terms of rainy 

variables. Every match-up duplet (x1, x2), obtained after performing a colocation strategy as described in section 
8.3, can be classified as a hit (a, observed rain correctly detected), miss (c, observed rain not detected), false alarm 
(b, rain detected but not observed), or correct null (d, no rain observed nor detected) event. The sum a+b+c+d is 
equal to the sample size n. The accuracy score or probability of correct detection is defined as (a+ d)/n, and it 
indicates the fraction of total sample that has been correctly identified as rainy or non-rainy. The probability of 
detection, POD gives the fraction of rain occurrences that was correctly detected, while the false alarm ratio, FAR, 
measures the fraction of rain detections that was actually false alarms. By considering the number of hits that could 
be expected due purely to random chance, given by h, the HSS score is defined as the fraction of correctly detected 
match-ups (as rainy or non-rainy) but after eliminating the fraction correctly identified due to random chance. 
Similarly to this, the ETS indicates the fraction of correctly detected match-ups (as rainy), adjusted for the number 
of hits that could be expected due purely to random chance. ETS is more severe than HSS since it does not take 
into consideration the corrected negatives. For further references see Cimini, et al., 2013. 

 
Error indexes 
δx  = x2-x1       Error difference 
STD  = <(δx-ME)2>      Standard deviation error 
ME  = <δx >       Mean error 
MAE  = <|δx|>       Mean absolute error 
RMS  = [<(δx)2>]0.5      Root mean square error 
RMSN = [<(δx/x1)2>]0.5      Normalized RMS error 
FSE  = RMS/<x1>      Fractional standard error  
AMB  = <x2/x1>       Average Multiplicative bias 
ARB  = <x2>/<x1>      Average ratio bias  
CCO  = [<(x1-<x1>)(x2-<x2>)>]/[<(x1-<x1>)2><(x2-<x2>)2]0.5  Correlation coefficient 
LRC  = (<x2!x1>)/(<x2!x2>)     Linear correlation coefficient. 
STD30 = 100*Number of x2 samples within +-30% of x1 values/n 30% Confidence interval 
             ( 3) 

8.2 TRIPLE COLOCATION 
One possible method for quantifying measurement errors without relying on the quality of reference data sets 

might be the so-called triple collocation method. This is a method for estimating the random errors of three 
collocated data sets, which can be assumed to represent the same physical parameter while simultaneously solving 
for systematic differences. The method assumes independent (uncorrelated) error structures, which means that the 
errors must not have the same origin. This is given when using, for example, any combination of in situ 
measurements, active or passive satellite observations, and numerical weather prediction models, provided that the 
model is not driven by one of the others. Several studies highlighted the high potential of the triple collocation in 
becoming a standard procedure in a comprehensive satellite products validation process (Dorigo et al., 2010; 
Miralles et al., 2010; Scipal et al., 2008; Stoffelen, 1998). Nevertheless, studies also showed that the result is 
highly sensitive to its input configuration, including different scales and represented physical quantities of the 
sources, the use of absolute values or anomalies, the time span under observation, and the available number of 
measurement triplets (Loew and Schlenz, 2011; Zwieback et al., 2012).  

Large scale differences among the three input data sets might introduce errors caused by the spatial and temporal 
variability of the input quantities considered, leading to a mismatch in the spatial or temporal representativeness. 
These errors, called error of representativeness, are reflected in the triple collocation theory and they can take a 
high fraction of the overall error, leading to an overestimation of the actual inherent sensor error (Miralles et al., 
2010). However the estimation of the representativeness error results very difficult even though some efforts have 
been done in literature (Vogelzang et al., 2011).  

The triple colocation allows calculating two set of important information of given measurement systems: i) 
RMSE of measurement estimates, ii) system calibration constants. For working, the triple collocation requires at 
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least three measurements plus several hypothesis on the error’s structure that characterize each measuring system. 
However, the number of the considered measuring systems can be greater that three at the cost of increased 
complexity. The formulas in the next section give a synthetic overview of the triple collocation method whereas 
details on the formula’s derivation are given in the appendix A. 

An important aspect to consider is related to the scales (spatial or temporal) of the derived product errors. Since 
the triple collocation requires as input a set collocated matchups, a rescaling procedure is needed to align the three 
data sources at the same common scale and then to form the matched triplets. Given its easy practical 
implementation, the scale resampling is usually reduced to an up-scaling procedure. In the triple collocation the 
data up-scaling is aimed to matching the two observations at smaller scales on the larger and common scale domain 
of the third observation’s system.  

8.2.1 Fields of applications 
The triple collocation was introduced for the first time by Stoffelen, 1998 for wind and stress comparisons 

(Portabella and Stoffelen, 2009; Vogelzang et al., 2011). Other area of applications included wave height 
comparison (Caires and Sterl, 2003; Janssen et al., 2007), for sea surface temperature (SST) (O’Carroll et al., 
2008), soil moisture (Scipal et al., 2010), ice drift  (Hwang and Lavergne, 2010), precipitation analyses (Roebeling 
et al., 2011).   Recently, an interesting wok of Zwieback et al., 2012 gives the basis for the generalization to an 
arbitrary number of input sources based on simulated datasets. Note that so far, only the work of Roebeling et al., 
2012 focused on precipitation analyses. In that work a simplified triple colocation model was assumed and data 
where analyzed on a monthly basis. 

8.2.2 Definitions 
In the triple colocation a given observed quantity, x, from the measuring system i-th, (xi) is though to be a linear 

combination of the true variable “θ”, a random error “δi” and its bias “bi”.  
xi = si θ +bi +δi( )                                                              ( 4) 

where: 
 
i = 1, 2, 3. Index that identifies one of the three measuring systems. 
xi = measured variable from the i-th observing system. 
θ = true (unknow) variable. 
δi = zero mean random error associated to the i-th measurement system. 
bi = error bias (also called average error or accuracy) of i-th measurement system. 
si = scaling factor (also trend of gain factor) of i-th measurement system. 
 
The final goal of the triple collocation is to estimate the calibration constants si and bi and then error variance of 

δi.  Basically, we are assuming that each estimate xi, is the result of a linear transformation of the true variable 
θ plus the random error. Note that eq. (4) describes 3 equations whereas there are 9 unknowns: si, bi, δi with i=1, 2, 
3. However, using first and second mixed moments of eq. (4) and making some key hypothesis, which are 
described in the appendix, we can get 9 equations that allow solving the undersized problem. It is worth noting that 
θ is an implicit unknown variable but it is eliminated considering the difference among couple of equations of (4): 
x1-x2, x2-x3 and x1-x3 (see appendix A for details).  

8.2.3 Root mean square error and calibration constants  
The solution of the triple colocation is given below when system 1 is taken as reference for calibration and 

system 3 is taken as reference for the scale of analysis (see appendix A for details). 
 

Calibration coefficients: 

                                                               ( 5) bi =
Mxi

si
−Mx1
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                                                                ( 6) 

 
where Mxi= <xi> and system 1 is taken as reference system which leads to b1=0 and s1=1 and Mx1=b1!s1=0. Cxi,j is 

the covariance of variables xi and xj whereas Mδ1,2 is the mixed moment <δ1!δ2>, which is the representative error, 
see appendinx A for details. The symbol <!> represents the average operator in space and time. 

 
Error variances: 
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where σδi
2 and σxi

2 is the variance of the error δi  and the measured variable xi, respectively. Eq.s (7) is rarely used 
in literature but we prefer to use it because the dependencies of error variance and measurements covariances of all 
systems are explicit and this facilitate the interpretation of the error variances in terms of the correlations among 
the available observations. In eq. (7), the contribution of the representativeness error is took into account through 
the term Mδ1,2. Note that Mδ1,2 sums to  error variances σδ1

2,σδ2
2 of systems 1 and 2 and subtract, in some way to 

the error variance of system 3: σδ3
2. This is a direct consequence of the choice we made to consider the system 3 as 

the reference for scale of analysis, which implies that systems 3 describe larger scales of systems 1 and 2 and for 
this reason the latters pay for an additional error term Mδ1,2 when up-scaled at the scale of system 3. See next 
section and appendix A for additional details.  

 
RMSE: 
Once the error variances of the tree measuring systems is found using for example eq. (7), the RMSE can be 
calculated using the following formula: 

RMSE = σεi
2 +bi

2                                                                       ( 8) 

Note that we assumed that the biases, bi, are only referred to the error and not to the true value. 

8.2.4 Representativeness errors  
A representativeness error also called discretization error comes into play whenever a spatial or temporal 

sampling is applied to observe a given geophysical variable. The error of representativeness captures the difference 
between the value of the variable on the space–time scale on which it is actually measured and its value on the 
space–time scale on which we wish to analyze it. Thus, to define representativeness error it is important to 
introduce the concept of “scale of analysis”. When we are dealing with the comparison of two observations we 
have to choose the scale (spatial or temporal) at which to perform the comparison between the two sources of 
information. Usually, one of the two observation systems is chosen as reference, which implicitly means that it is 
regarded as the true scale of variation. The scale of observation of such reference system is then considered as scale 
of analysis. Thus, all random errors components must be referred to the scale of analysis instead to its natural scale. 
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This implies that the random error of the i-th observing system, δ i is scale dependent and it is given by the sum of 
two terms: 

 
δi = δMi +δRi                                                                     ( 9) 

where: 
δ iM: Measurement error of i-th measuring system. 
δ iR: Representativeness error of i-th measuring system. 
 
The component δ iM depends from the instrument and algorithms used to obtain the geophysical information 

desired while ε iR uniquely depends from the scale of analysis compared to the scale of the i-th observing system.  
The term δR can be lowered increasing the spatial and/or temporal scale resolution of analysis. Of course, from a 

practical point of view, this choice depends from the availability of high resolution measuring systems, which is 
not always practicable. 

 It is worth noting as the representativeness error depends by the optimal combination of the size of the scale of 
analysis compared to the variability of the quantity under investigation. For example, higher sampling rates do not 
have a sensible impact on the representativeness error when observing slowly variable quantities. 

In the triple colocation equation, the representativeness error is not explicitly took into account considering 
directly δR. Rather, the representativeness error is described through mixed moment Mδij with i=1 and j=2. Note 
that while it is reasonable to assume that the measuremets errors δM in measurements made by totally independent 
techniques and systems will be truly independent, the same might be not valid for the representativeness error δR. 
This directly translate into MδMij=0 when i and j are two independent systems. On the other hand, MδRij=0 when 
systems i and j are two systems which do not share a significant common scale of observation. When systems i and 
j share a large enough portion of spatial or temporal scale, MδRij might be different from zero. Note that in general 
Mδij = MδRij only if the terms δMi and δRj and the terms δMi and δMj are not correlated which means <δMi δRj>=0 and 
<δMi δMj>=0 as usually largely verified: 

 
Mδij =< δiδ j >=< (δMi +δRi ) ⋅ (δMj +δRj ) >=< δMiδMj > + < δRiδRj >=MδRij                      ( 10) 

 
Suppose now that systems i and j share a common scale but their resolution is different. Let say that system “j” 

has a higher resolution (i.e. it resolves a finer scale) than system “i”. Thus, we can think that the system with the 
coarser resolution (i.e. system “i” in our example) has a larger representative error than system j when compared to 
a third (larger) reference scale of analysis. This means that δRi=δR+ΔδR and δRj=δR. The term δR represents the 
common part of the representativeness error shared by the systems “i” and “j” whereas ΔδR is the additional error 
contribution of the system “i” due to its coarser resolution. Under the aforementioned treatment and using the 
hypothesis 1 (<δ>=0 see appendix A) in eq. (10), it rewrites into (11) demonstrating the direct link between the 
terms Mδij and the representativeness error variance σR

2=<δR
2>: 

 

Mδij =MδRij =< (δR +ΔδR ) ⋅ (δR ) >=< δR
2 > +ΔδR < δR >=< δR

2 >                              ( 11) 

 
It should be noted that, if the reference scale of analysis is taken coincident with that of one of the two measuring 

systems “i” or ”j”, then Mδij=0. This is because at the reference scale of analysis, the error of representativeness, δR 
is zero and eq. (11) becomes Mδij= <δMi!(δMj+δRj)> = <δMi δMj> + <δMi δRj> = 0. Note that measurements errors δMi, 
δMj are likely uncorrelated if they are supposed to come from different measuring systems while δMi  and δRj are 
independent following their definition.  

8.2.5 Considerations 
Consideration 1: representativeness error 
The term Mδ1,2 in eq. (7) that describes the error variances of the three measuring systems, adds to σ2

δ1 and σ2
δ2 

and in some way subtracts to σ2
δ3. This is a direct consequence of hypothesis HPs 3-5 (see appendix A) that imply 

to assume as reference scale of analysis for the comparison that of the system number 3. Thus, all error variances in 
(7) are referred to the scale of system 3, which is assumed larger then that of systems 1 and 2. As a consequence 
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systems 1 and 2 at finer scale than system 3 have an additional term, +Mδ1,2, which quantifies the 
representativeness error when the scales of the systems 1 and 2 are matched up at the larger scale of system 3. 

On the contrary, system 3 has not representative error since its sale of observation coincides with that taken as 
reference scale of analysis. Then the term Mδ1,2, which is characteristic of systems 1 and 2 when compared at scale 
of system 3,  is not seen by system 3 and for this reason it is subtracted.  

If we make another choice, let say fix the scale of system 1 as reference scale of analysis, the terms Mδ1,2, Mδ1,3 
would be zero because the representative error of system 1 at its scale is zero, and Mδ2,3 will add to systems 2 and 3 
and subtract to system 1 for the same reasons explained before. 

 
Consideration 2: Covariance calculations 
 The calculation of the error variances requires the computation of the covariances between couples of the 

considered variables. However, the variables are sampled in time and space so that they match on the larger scale 
common to all available observations. Additionally, without any specific rule, all matched-up samples are 
considered all together for the calculation of the covariances. This means that we are implicitly assuming that the 
phenomena that we are observing, is second order stationary in time and space. This may be in general not true for 
a geophysical variable as the rain rate but it is surely not true when we consider large spatial and temporal domains. 
An alternative way might be to fix the pixel position and then calculate the temporal covariances for each position 
and couple of measuring systems. The final output would be, in this case, an error 2D map. In this case we need to 
take care of stationarity in time domain only. Of course, time and space domain are related each other and this 
option is more a practical implementation strategy than a solid theoretical approach. Additionally this approach can 
be implemented after interpolating the three source of information on a same grid, which must not vary in time. 
This might be not always verified when considering polar orbiting systems. A way out to solve this issue might be 
to apply some kind of interpolations adding an additional source of uncertainty which would be the interpolation 
error. 

Another aspect to consider when calculating the time covariances, is that the scaling and bias factor will result 
adjusted in space for each pixel position. This is a paradox since the calibration parameters should not vary in space 
since they are, in principle an instrumental property. On the other hand this mean that we are continuously 
calibrating the three systems in each grid position then increasing the error’s performances.  
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8.3 DATA SET AND COLOCATION STRATEGIES 

8.3.1 Selected data set and time period for the comparison  
The data products selected for the comparison are the near surface rain rate in [mm/h] obtained from a prototype 

of H-SAF PR-OBS3, TRMM precipitation radar 2A25 v7 and TRMM microwave radiometer 2A12 v7, products 
indicated respectively by:  

 
- RH03 : near surface rain from H03  [mm/h] 
- RTPR : near surface rain from TPR  [mm/h] 
- RTMI : near surface rain from TMI [mm/h] 

 
The algorithm’s background for of the above mentioned rain (R) estimations are described in section 6. The 

algorithm version of the H03 prototype considered in this study is obtained from a post-processed dataset and it 
ingests the latest upgrades of H02 product (i.e. an upgrade of the Neural Network Precipitation Retrieval over the 
MSG full disk) but it does not include the H01 estimates. This is mainly due to practical reasons. In fact, H01 has 
not followed the same algorithmic temporal evolution of H02 and its inclusion at this stage, would have risked 
corrupting the final H03 rain estimates. For this reason the results that follows have not to be considered as the 
evaluation of the state-of the art of H03 developments. However, a qualitative indication on the impact that would 
have been brought by the inclusion of H01 availability is shown in section 8.3.5  

While H03 provides surface estimates of rain rates every 15 min on a fixed reference grid exploiting the SEVIRI 
geostationary orbit, TMI and TPR fly on the TRMM polar orbiting platform, providing rain rate estimations on 
irregular overpasses. Note that for this study H03 data have been reprocessed to timely include the SSMIS 
overpasses which are ingested a posteriori in the operational version of the H03 product.  Figure 1 shows an 
example of the TPR and TMI overpasses on the H03 grid within the selected target area. The period of analysis is 
of 12 months from June 2012 and May 2013. The overall H03, TPR, TMI data storage occupancy is of 18 GB, 45 
GB and 37 GB, respectively.  

It should be noted that H03, TMI and TPR rain products have additional information about quality and rain flags. 
These flags are collected together with the rain rate values in order to partition the collected dataset as a function of 
rain regimes and or data quality. The selected data flags are: 

 
- TMI freezing level estimation: expressed in [m] 
- TMI quality flag:    0= good quality; 1= medium quality; 2=bad quality.  
- TPR rain flag    16 bit code indicating various rain regimes and total path attenuation.  
- H03 quality flag     [0, 100] % values where 100 is the best data quality 
- TMI surface type   10= ocean; 20=land; 30=coast. 

8.3.2 Target area  
The selected target area (see Figure 1) lies between longitude [24W, 35E] and latitude [26N, 37N]. The selected 

area identifies the North Africa and Mediterranean region. The choice of this area is a compromise to guarantees 
data intersections between the HSAF products used for the analysis, which nominal coverage is within Lat/Lon 
[25N,75N], [25W,45E] and the swats of TRMM products from PR and TMI sensors which are selected for the 
comparison. The former extend its swat up to 37N while the latter up to 38N. Thus the simultaneous colocation of 
the three data sources is limited in latitude up to 37 N.  

8.3.3 Data spatial matching 
The three source of rain rate considered, namely, H03, TPR and TMI are spatially aligned before calculating the 

error score in a dual or triple colocation mode. To maintain consistency between the two methodologies of data 
comparison, we up-scaled the available measurements to the source with the coarser spatial resolution. In our case, 
the IFOV of H03, TPR and TMI is approximately 3.5×3.5 km2, 5×5 km2 and 12×12 km2. This has lead to upscale 
H03 and TPR on the TMI grid, which means that for each TMI grid point we (unconditionally) averaged all values 
of H03 and TPR within a circle of 12 km diameter for the selected TMI grid point.  The term “unconditionally” 
refers to the fact that we considered all rain values i.e. rain rate greater or equal than zero within the visited TMI 
IFOV. For this reason, hereafter the reader should keep in mind that the results that follows, refers to the spatial 
scale of 12×12 km2. 
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Lastly, note that as done for the rain rates we up-scaled the quality flags associated to TPR and H03 to the TMI 
IFOVs as well. This cannot be accomplished calculating the mean flag value because this would lead, in some 
cases, to up-scaled flags that do not have correspondence with the code which univocally identify the flag meaning. 
For example, if one TMI IFOV includes 2 TPR pixels with rain flags respectively equal to 19 and 35 their average 
would be 27 with could codify another rain class or could be not associated at any TPR flag. For this reason to 
upscale the rainy and quality flag we used the mode operator (i.e. the most frequent) with respect to the average. 
Note that, on average for the case analyzed, 4 TPR and H03 IFOVs are within a TMI IFOV. 

 

8.3.4 Data temporal matching  
Data temporal matching of geostationary and polar orbiting measuring systems can be something complicated 

over large spatial domains (Turk et al., 2002). Fortunately, in our case, we verified that the time needed for TRMM 
overpasses, over the selected target area, never exceed 15 min, which is the time sampling of H03. Thus, the 
temporal matching rule we adopted was to temporarily collocate all the TRMM overpasses over the target area 
closest to the H03 acquisition times. For the TRMM acquisition time we considered the instant t=tin+(tend-tin)/2 
where tin and tend is the TRMM starting and ending overpass instants over the target area.  

After the spatial and temporal matching the number of collected samples distributes as follows: 
– 2283   TRMM orbits matchups 
– 29723422  total unfiltered IFOVs matchups where (RTPR≥0 & RH03≥0 & RTMI≥0§)  
– 120780   rainy filtered IFOVs where (RTPR>0 & RH03>0 & RTMI>0) 

 

 
Figure 1: Target area (in red) Lat/Lon [25N,75N], [25W,45E] and an example of TMI (gray) and TPR (green) grid points 

for one of the selected overpasses. The grid points of H03 are in black. 
 

8.3.5 Impact of H01 and H02 availability on prototype H03  
In order to test the potential impact of the ingestion of H01 and H02 rain products in the generation of H03 rain 

retrievals, without digging into the algorithm aspects of H01, H02 and H03, we carried out a statistical analysis on 
the potential availability and temporal frequency of H01 and H02 for the analyzed dataset. To this aim, we grouped 
the available overpasses from DMSP-16-17-18 (i.e. those that would have been used to generate H01) and NOAA 
18-19, METOP-A (i.e. those used in the H02 generation), within 24 hours before each TRMM overpass we 
considered in the comparison with the H03 prototype in the 12 months dataset form June 2012 to May 2013. The 
area considered for this analysis is the nominal HSAF area and not the target area in Figure 1. A rigorous analysis 
should be done considering the H01 and H02 availability with respect to the proper target area but more 
importantly, it should consider the spatial windows in the target area used to build-up the rain rate histograms for 
the implementation of the BT [K] vs. RH01, RH02, [mm/h] probability matching. 

Keeping in mind the limitations above mentioned, we found that the availability of H01 and H02, considering all 
24 hour-time windows before each considered TRMM overpass, if of 20% and 80% respectively. Thus, potentially, 
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the use of H01 in our dataset would have had a smaller impact, respect to H02, when only time availability is 
considered. A more detailed analysis is shown in Figure 2 where the average number of available H01 and H02 
retrievals is shown as a function of temporal aging from each considered TRMM overpass.  In average we have we 
have ~100 maps from H02 against ~20 maps from H01 that contribute to the definition of the rain histogram 
needed to generate an instant map of H03. As last analysis we calculated the distribution of time intervals from 
each considered TRMM overpass and the nearest H01, H02 available retrieval. Figure 3 shows the result of this 
analysis. The higher potential availability of H02 is confirmed for all 10min binned time intervals. 

 

 
Figure 2: Number of overpasses as a function of separation time between each considered TRMM overpass and 
DMSP-16-17-18 (red curve), NOAA 18-19, METOP-A (blue curve) overpasses. Dotted lines indicate min/max 

values whereas solid lines are average values. 
 

 
Figure 3: Minimum time separation between each considered TRMM overpass and DMSP-16-17-18 (red bins), 

NOAA 18-19, METOP-A (blue bins) overpasses. 
 

9 RESULTS 
This section shows the results of the analysis performed on 12 months collected data from June 2012 and May 

2013 after up-scaling the H03 and TPR sources on the 12×12 km2 TMI IFOV. The section divides in two parts: 
qualitative and quantitative results. 

9.1 QUALITATIVE RESULTS 
The qualitative performances of three rain products H03, TPR and TMI are firstly analyzed by a visual inspection 

of several case studies, which are shown in Figure 4 by raw and by sensor from left to right, respectively. In this 
figure the data source are showed at their native resolution and the comparison among rain maps can be done in the 
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areas covered by the TPR ground track, which is grey color-coded. The list of case studies, TRMM track number 
and UTC hours are also reported in Table 1 for completeness. 

The first thing to note is that TMI does not always provide reliable estimates of rain rate over African land (panel 
1,3 in Figure 4). This has been explained in the TMI GPROOF algorithm section and was explained by the fact that 
over land, only scattering frequencies are useful by GPROOF for rain estimation, which yields too little 
information to use a Bayesian profile selection technique because of the high and variable microwave emissivity of 
land surfaces. The second thing to note is the spatial extension of precipitation of H03. Most of times H03 rain 
areas cover a larger domain of that covered by TPR. On the contrarily the H03 rain areas seem to be more 
homogeneous with respect to those covered by TMI. The spatial variability of rain precipitation appear more 
smoothed for H03 in comparison to that of TMI and TPR, the latter revealing a more complex rainy cell structure 
that what is seen from H03 and TMI. This fact lead to a underestimation of rain rate form H03 and as a 
consequence the hit rates defined in eq. (2) tend to reduce. Thus, high false alarms are expected. Overall we note a 
better consistency between TMI vs. TPR that H03 vs. TMI or H03 vs. TPR.  
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Figure 4: Case studies for qualitative comparisons ordered by rows as indicated in each panel’s title. From left to right 

columns: H03, TPR and TMI rain rate estimates in [mm/h], respectively. All data shown are the native spatial resolution and 
at approximately at the same time (i.e. with a maximum time difference of 15 min). Rain rate values are color coded in the 
range [0, 10] mm/h. The gray band represent the TPR ground track that is the spatial domain common to the three data 

sources. 
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Date 

[MM DD YYYY] 
H03 hour 

 [utc] 
TRMM hours  

[utc] 
TRMM track 

number  
Lon; Lal 

[Decimal Deg] 
Jul.  25th 2012 12:57 13:01 – 13:02 83691 [-9,-4];[33,37] 
Aug. 22th 2012 18:27  18:21 – 18:23 84131 [0,10];[26,30] 
Sep. 27th 2012 06:12  06:06 – 06:09 84684 [-16,-2];[30,35] 
Sep. 27th 2012 04:27 04:28 – 04:31 84683 [-16,-2];[30,35] 
Sep. 27th 2012 02:57 02:50 – 02:54 84682 [-16,-2];[30,35] 
Oct. 15th 2012 17:27 17:22 – 17:36 84972 [5,20];[33,37] 

Table 1: List of case studies for qualitative comparisons. 

9.2 QUANTITATIVE RESULTS 
In this section the quantitative results are shown. Firstly, dual colocation methodology is applied to the couples of 

data FOVs, that is: H03 vs TPR, H03 vs TMI and TMI vs TPR. Even though we do not know a priori which of 
three systems perform better than the others, we refer to the TPR estimates as reference term of the comparison. 
For what follows we considered all data in the 12 months from June 2012 to May 2013 selecting all samples where: 
 

Data filtering rule 1:  RH03≥0 & RTMI≥0 & RTPR≥0 & H03_rain quality>40% & TMI_rain_quality=0 (i.e. good)  
   & TPR_rain_flag = rain certain or no rain. 

 
Note that we selected all samples, which have a H03 quality greater than 40 %. It has been fond that this choice is 

a good compromise between the number of available samples after filtering and the correlation found between TMI 
and H03 rain retrievals. Additionally, it is required by rule 1 that the RTMI has to be the highest possible quality (i.e. 
TMI_rain_quality=0) and, at the same time, the values of RTPR have to be “certainly rain” or “no rain” (i.e. 
excluding cases of “possible rain” or in other words uncertain radar estimation of near surface rain estimations). 

9.2.1 Dual colocation skill scores 
The formal definitions of the skill scores is given by eq. (1) and (2). In those equations we chosen x1=RTPR 

(reference system) and x2=RH03 (the system under validation). The definitions of hit, false, miss and correct 
negatives given in eq. (1) is actually here a little bit modified. Since we filtered data using rule 1 before mentioned, 
we are actually discarding all samples for witch TPR rain flag gives possible rain as indicated. This means to 
consider only the samples where RTPR=0 or it is certain rain, i.e. RTPR≠0 using the TPR rain flag code. In addition 
to definitions in (1) we added, only over ocean, the condition of RTMI>Rth and RTMI≤ Rth to define a rainy event and 
no rainy event, respectively. The rain threshold xth=Rth is left variable between 0 and 10 mm/h. 

The values of POD, FAR CSI, PCD ETS and HSS defined in eq. (2) are shown in Figure 5 where left, middle 
and right panel refer to result over all, land and ocean samples, respectively. While POD, ETS and CSI fall down as 
Rth increases; the FAR remain pretty stable on values of approximately of 80% and over ocean even increases up to 
98 %. The underestimation of RH03, already noted by the qualitative analysis of Figure 4, might be responsible of 
the increment of the miss rate (cases where rain is observed but not detected i.e.: RTPR>Rth & RH03≤ Rth) and the 
decrement of hit rate (cases where rain is observed and detected i.e.: RTPR>Rth & RH03>Rth) which traduce into a 
decrement of POD and stable high FAR. Over ocean we have some sensitivity of FAR to the threshold, Rth, and this 
indicates a rapid decrement of the hit rates as Rth increases. 

The differences among land, ocean and all samples partition is better appreciated in Figure 6 in terms of FAR 
and POD only. Higher POD corresponds to lower FAR and in this case is difficult to drawn conclusions. If we fix 
Rth=0 we can say that highest POD (50%) are over land while lowest FAR are over ocean (70%). Eventually, 
Figure 7 shows POD and FAR for various H03 quality thresholds. While the H03 quality does not sensibly affect 
the FARs it has a detrimental impact on the POD, or in other words on the miss rates that strongly increase as the 
quality increases. Thus our conclusion is that the quality index is not including any quality on the detection 
performance of H03 product. 
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Figure 5: skill scores defined in eq. (2) for all samples (left), land (middle) and ocean (right) panels for the whole 12 month 

period analyzed from June 2012 to May 2013 over the target area of Figure 1. 
 

 
Figure 6: POD (left) and FAR (right) partitioned into all, land and ocean samples. for the whole 12 month period analyzed 

from June 2012 to May 2013 over the target area of Figure 1. 
 

 
Figure 7: As in figure 4 but for all samples as a function of H03 quality thresholds indicated in the panel’s legend. 

 

9.2.2 Multi categorical tables 
Multi categorical tables show the percentage of samples of data source n.1 that lies in a given category when, 

simultaneously, data source n.2 lie in another category. We selected four rain categories i.e: [0, 0.1], [0.1, 1], [1, 
10] and [>10] mm/h and we build up the multi categorical tables: Table 2, Table 3 and Table 4 which refer to the 
comparisons between TMI vs. H03, TPR vs. H03 and TMI vs. TPR, respectively. In these tables the last column 
and raw list the number of samples in each category for the two data sources considered in the table.  

We observe a pronounced underestimation of RH03. For example when RTMI is within  (1,10] mm/h, 55.82% of 
RH03 estimates are within [0, 0.1] mm/h. The comparison with the TPR is even slightly worst. On the contrarily, in  
Table 4 the comparison between TPR and TMI is more consistent. In this case for example, when RTPR is within  
(1,10] mm/h, 48% of RTMI are in the same category and just the 6.35% is within [0, 0.1] mm/h.  
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OCEAN  TMI (reference)  

Rain step 
[mm/h] 

[0,0.1] (0.1,1] (1,10] (>10) No. H03 

 
H 
0 
3 

[0,0.1] 98.37 86.79 55.82 15.02 11436000 

(0.1,1] 1.33 9.28 22.27 23.43 209170 

(1,10] 0.31 3.88 21.36 58.94 70171 

(>10) 0.00 0.06 0.55 2.61 801 

No. TMI 11178000 454490 82919 1225 11717000 
Table 2: Multi categorical table TMI vs. H03. Values in the 4 x 4 inner matrix are in [%]. 

 
OCEAN TPR (reference)  

Rain step 
[mm/h] 

[0,0.1] (0.1,1] (1,10] (>10) No. H03 

 
H 
0 
3 

[0,0.1] 98.14 85.09 67.53 42.65 11436000 

(0.1,1] 1.48 10.15 17.41 22.79 209170 

(1,10] 0.37 4.68 14.73 33.13 70171 

(>10) 0.00 0.08 0.33 1.44 801 

No. TPR 11409000 188870 11257
0 

6197 11717000 
Table 3: Multi categorical table TPR vs. H03. Values in the 4 x 4 inner matrix are in [%]. 

 
 

OCEAN TPR (reference)  

Rain step 
[mm/h] 

[0,0.1] (0.1,1] (1,10] (>10) No. TMI 

T 
M 
I 

[0,0.1] 97.31 36.69 6.35 0.32 11178000 

(0.1,1] 2.63 54.39 45.04 8.15 454490 

(1,10] 0.06 8.92 48.04 82.15 82919 

(>10) 0.00 0.00 0.57 9.38 1225 

No. TPR 11409000 188870 11257
0 

6197 11717000 
Table 4: Multi categorical table TMI vs. TPR. Values in the 4 x 4 inner matrix are in [%]. 

 

9.2.3 Dual colocation error scores 
For the calculation of the error scores we excluded from the analysis all no rainy data, which means adopting a 

new filtering rule: 
 
Data filtering rule 2:  RH03>0 & RTMI>0 & RTPR>0  & H03 rain quality>40% & TMI rain quality=0 (i.e. good) & 

   TPR_rain_flag = rain certain or no rain 
 
With respect to the filtering rule 1, used for the calculation of the skill scores, we required all rain rate estimates 

to be strictly greater than zero rather then greater or equal to zero. Partition with respect land, ocean is performed 
using the TMI surface type flag whereas the stratiform, convective rain regimes are discerned using the TPR rain 
flag once up-scaled at the TMI IFOVs. 
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The choice to exclude the rain values equal to zero in rule 2 is because we are thinking the whole rain process as 
the product of two independent processes: the intermittence process (i.e. rain, no rain process) and the rain 
evolution process. The evaluation of the intermittence process is in some way accomplished by the analysis of skill 
scores, previously shown, while the evaluation of the performance of the rain evolution process is carried out in 
this section considering only the values during precipitating periods. 

Firstly, the performance evaluation of the RH03, RTPR RTMI is shown in terms of their probability density function 
(PDFH03, PDFTPR, PDFTMI) in Figure 8. From this figure, as expected for the reasons explained before, it is evident 
the anomaly of the PDFTMI for land scenarios (bottom panel cyan curve) with respect to the PDFH03 and PDFTPR. 
For this reason, hereafter, the results that will be shown in the next and that include TMI rain estimates, are referred 
to ocean case only.  Looking at PDFs, it is interesting to note the left end tail of the PDFs for values less then 0.1 
mm/h where a peak is noted. This peak is more pronounced for PDFH03, and it is due to the up-scaling procedure 
we applied to adapt the finer spatial scale of TPR and H03 to the larger one of TMI. Thus, for example, if the 
average of several H03-IFOVs onto the closest TMI-IFOV includes a lot of no rainy of low rain H03-IFOV, the 
resulting average H03-IFOV may be a very low value (i.e. a value lower that the rain product sensibility which is 
0.1 mm/h for RH03). In Figure 8 the PDFH03 is more peaked than PDFTPR for values less than 0.1 mm/h and, for what 
explained before, this is due to the fact that RH03 miss more rain events than RTPR  (compare the peak levels of 
PDFH03 and PDFTPR for values less than 0.1 mm/h). Looking at the stratiform, convective PDFs over ocean we note 
a good agreement for stratiform rain while for convective rain both PDFTMI and PDFH03 are not in agreement with 
PDFTPR. 

The second test benchmark is the monthly analysis. In this case for each month we calculate the RMS of the error 
differences RH03-RTMI and RH03-RTPR, respectively indicated by RMSH03-TMI and RMSH03-TPR. The values of such 
monthly RMS are in Figure 9 where the average RTPR values are shown as well by black/yellow markers. From this 
figure, RMSH03-TPR (red)> RMSH03-TMI (black), indicating a better agreement of RH03 with RTMI than with RTPR. 
However, the difference between RMSH03-TPR and RMSH03-TMI is very small during stratiform events over ocean or 
for low rain rate. Values of RMS, ME, CCO as defined in eq (3), for ocean stratiform case are listed in Table 5. 

The last validation test is represented by the two-dimensional (2D) histograms. In this case we considered duplet 
of rain IFOVs and binned them for class of rain rate. For each class we calculate the probability of the rainy IFOV 
in each class with respect to the total number of duplet. The result is shown in Figure 10 in the ocean case. The best 
visual correlation is obtained in the ocean-stratiform case when RTPR and RTMI. In all other cases the 2D-histograms 
are very scattered from the bisector line. All the scores defined in eq. (3), divided by seasons for ocean convective 
and stratiform rain regimes, are listed in Table 6,  

Table 7, Table 8 where for the error is defined as RH03-RTMI, RH03-RTPR, and RTMI- RTPR, respectively. These tables 
confirm what previously noted through the multi-categorical tables, PDFs and average monthly trends, that is, 
better performance of H03 over ocean stratiform than convective rain regimes, a better agreement of H03 with TMI 
than TPR with low correlation that not exceed 0.31. It is worth noting that the values in table 8 (i.e. TRMM 
comparisons) can be taken as reference for the other two tables. In fact, it seems reasonable to have better 
performance when comparing two microwave-based estimates which are collocated on the same platform than the 
H03 blended product. Thus, comparing the score in table 6 and 7 with those in table 8 we have, for the prototype 
H03, an increment of 40% - 50% of RMSE and approximately 50 decrement for correlation coefficient. 

Note that the error score in the tables just introduced, are obtained selecting rain rates values strictly larger than 
zero. A different way to present the results is to select only those rain rates that exceed a variable threshold (>0) 
and calculate the error score for that threshold. Since the choice of a threshold would be arbitrary we preferred to 
vary the rain threshold and show the variations of the error scores as a function of the varying threshold. This is 
shown in Figure 11 only for RMS, RMSN and CCO for ease of reading. From this figure, while the RMSN and 
CCO decreases, the RMS increases. Thus, in our case, we do not have a benefit in increasing the rain threshold for 
error evaluation because the RMS and CCO respectively increase and decreases. 

 
 

 RH03-RTPR 
[mm/h] 

RH03-RTMI 
[mm/h] 

RTMI-RTPR 
[mm/h] 

ME -0.70 -0.70 -0.33 
RMS 2.84 2.84 2.00 
CCO 0.26 0.36 0.67 

Table 5: Mean Error, Root Mean Square and correlation Coefficient, for the monthly averages shown in Figure 9 
in the ocean-stratiform case. 
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Figure 8: Probability density functions partitioned into samples of ocean (top), Land (bottom), All (left), stratiform (middle) 

and convective (right) for the whole 12 month period analyzed from June 2012 to May 2013 over the target area of Figure 1. 
 
 

 
Figure 9: Conditional (R>0) monthly RMSE of TPR vs. H03 (red), TMI vs. H03 (black). Black stars refer to values of RTPR. 
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Figure 10: two-dimensional histograms of samples as indicated in the left legend and the titles inside the panels for the 
whole 12 month period analyzed from June 2012 to May 2013 over the target area of Figure 1. Colors referrers to the 

probability (red=1, withe=0) to find (x,y) samples. 
 

 
Figure 11: Error scores between H03 and TMI rain estimates: root mean square error RMSE (solid blue), Normalized 

RMSE (dashed blue) and correlation coefficient (green) as a function of rain threshold in [mm/h]. Values refer to the ocean-
stratiform case and for the period from June 2012 to May 2013 over the target area of Figure 1. 
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H03 vs TMI (OCEAN convective) 
Scores All year DJF MAM JJA SON 
RMS 4.03 3.24 2.25 0.39 4.97 
RMSN 3.45 3.94 2.18 0.71 3.37 
STD 3.71 2.59 1.95 0.24 4.77 
FSE 2.38 4.15 2.40 3.43 1.83 
ME -1.57 -1.94 -1.13 -0.32 -1.41 
MAE 2.58 2.17 1.59 0.32 3.27 
AMB 1.08 0.74 0.98 0.32 1.40 
ARB 0.52 0.29 0.45 0.26 0.66 
CCO 0.22 0.28 0.09 -0.15 0.14 
LRC 0.34 0.20 0.29 0.21 0.40 
STD30% 14.99 12.00 15.52 0.00 17.36 
Ns. 2956 1133 451 7 1365 

 
Table 6: Error score as in eq. (3), for RH03- RTMI in [mm/h]. Ns=Number of samples. Seasonal analysis is shown 
and months are grouped as indicated by in the third-sixth columns of each table. 

 
H03 vs TPR (OCEAN convective) 

Scores All year DJF MAM JJA SON 
RMS 11.25 8.43 7.93 3.23 13.93 
RMSN 0.95 0.97 0.86 0.85 0.96 
STD 7.91 4.57 5.09 2.10 10.27 
FSE 6.64 10.82 8.45 28.20 5.14 
ME -8.00 -7.09 -6.08 -2.58 -9.42 
MAE 8.24 7.09 6.11 2.58 9.92 
AMB 0.25 0.14 0.19 0.20 0.36 
ARB 0.17 0.10 0.13 0.04 0.22 
CCO 0.17 0.12 0.09 0.55 0.07 
LRC 0.13 0.08 0.09 0.03 0.14 
STD30% 4.70 1.06 2.44 14.29 8.42 
Ns. 2956 1133 451 7 1365 

 
Table 7: Error score as defined in eq. (3), for error difference RH03- RTPR in [mm/h]. Ns=Number of samples. 

Seasonal analysis is shown and months are grouped as indicated by in the third-sixth columns of each table. 
 

TMI vs TPR (OCEAN convective) 
Scores All year DJF MAM JJA SON 
RMS 9.37 6.76 6.55 2.92 11.74 
RMSN 0.74 0.72 0.71 0.91 0.76 
STD 6.81 4.39 4.29 2.01 8.59 
FSE 2.87 2.49 3.17 6.70 2.85 
ME -6.43 -5.15 -4.95 -2.26 -8.00 
MAE 6.68 5.42 4.97 2.32 8.32 
AMB 0.39 0.37 0.34 0.70 0.42 
ARB 0.34 0.35 0.29 0.16 0.34 
CCO 0.52 0.37 0.59 0.63 0.52 
LRC 0.29 0.31 0.26 0.13 0.29 
STD30% 8.83 8.91 7.10 0.00 9.38 
Ns. 2956 1133 451 7 1365 

 
Table 8: Error score as defined in eq. (3), for error difference RTMI- RTPR in [mm/h]. Ns=Number of samples. 

Seasonal analysis is shown and months are grouped as indicated by in the third-sixth columns of each table.  

H03 vs TMI (OCEAN stratiform) 
Scores All year DJF MAM JJA SON 
RMS 2.49 2.10 1.28 0.59 3.29 
RMSN 11.27 10.74 12.39 3.89 11.22 
STD 2.46 1.98 1.27 0.57 3.28 
FSE 2.01 2.97 1.87 1.25 1.57 
ME -0.37 -0.69 -0.15 0.15 -0.24 
MAE 1.44 1.24 0.79 0.44 2.07 
AMB 2.93 2.54 3.15 2.83 3.15 
ARB 0.77 0.51 0.82 1.49 0.90 
CCO 0.31 0.17 0.19 -0.18 0.27 
LRC 0.43 0.23 0.42 0.65 0.51 
STD30% 14.84 12.23 15.63 11.92 16.86 
Ns. 13160 4709 3128 193 5130 

H03 vs TPR (OCEAN stratiform) 
Scores All year DJF MAM JJA SON 
RMS 2.84 2.58 1.74 0.71 3.57 
RMSN 10.27 5.35 7.66 7.90 14.36 
STD 2.75 2.30 1.68 0.71 3.54 
FSE 2.29 3.65 2.54 1.50 1.71 
ME -0.70 -1.16 -0.43 0.01 -0.47 
MAE 1.71 1.60 1.01 0.52 2.27 
AMB 2.82 1.66 2.63 3.96 3.97 
ARB 0.64 0.38 0.61 1.03 0.82 
CCO 0.26 0.05 0.21 -0.10 0.26 
LRC 0.36 0.17 0.28 0.40 0.45 
STD30% 13.73 11.60 13.08 12.44 16.14 
Ns. 13160 4709 3128 193 5130 

TMI vs TPR  (OCEAN stratiform) 
Scores All year DJF MAM JJA SON 
RMS 2.00 1.98 1.35 0.48 2.35 
RMSN 2.76 2.27 3.13 1.83 2.95 
STD 1.97 1.93 1.33 0.46 2.33 
FSE 1.24 1.43 1.62 1.51 1.00 
ME -0.33 -0.47 -0.28 -0.14 -0.23 
MAE 1.13 1.17 0.72 0.30 1.39 
AMB 1.55 1.22 1.65 1.56 1.79 
ARB 0.83 0.75 0.75 0.69 0.91 
CCO 0.67 0.56 0.57 0.51 0.70 
LRC 0.68 0.60 0.49 0.46 0.74 
STD30% 24.57 22.96 23.53 25.39 26.67 
Ns. 13160 4709 3128 193 5130 
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9.2.4 Spatial correlation analysis 
The spatial correlation of rain rate describes how correlation varies in space. We calculate the spatial correlation 

considering only rain rate strictly greater than zero to be consistent with the analysis carried out in the previous 
section. There are various techniques to calculate the spatial correlation form Fourier inversion of power spectral 
density to convolutional approaches. These methods require the data to be in a gridded matrix form. Since, in our 
analysis we excluded the non-precipitating values, our data have some spatial discontinuities and are not anymore 
in a matrix format and for this reason the methods before mentioned cannot be applied anymore. Thus we calculate 
the correlation function through the calculation of the variogram as in Montopoli et al., 2012. The isotropic spatial 
correlation functions for RH03, RTPR, RTMI is shown in Figure 12 for ocean scenarios, ocean-stratiform, ocean-
convective rain regimes. As expected for convective rain regimes the correlation fall more quickly that in the other 
cases. Additionally in all panel’s plots the correlation of RH03 is higher over the [0, 50] km scales while the RTMI and 
RTPR are more in agreement each other. The higher correlation of RH03 is indicating that it is more spatially 
homogeneous (i.e. smoothed) than RTMI and RTPR. The same conclusion can be also achieved by the visual 
inspection of case studies in Figure 4. The length of correlation LH03, LTMI, LTPR in [km], extracted by Figure 12 is 
(44, 25, 19) for the ocean-stratiform case and (17, 7.5, 1.5) for the ocean-convective case. It is worth noting that 
higher spatial correlations of H03 may lead to overestimations in rain spatial and temporal accumulation. The 
explanation of that is because higher correlation in space may imply a higher persistence of rain precipitation in 
time. Thus, the spatial correlation can be considered as an alternative tool, with respect to considering ground 
reference values, to drive algorithm settings in order to quickly calibrate H03 rain accumulations.  

 

 
Figure 12: isotropic spatial correlation function calculated for ocean, ocean stratiform and Ocean convective cases. 

9.2.5 Triple colocation scores 
To obtain the triple colocation error score we applied eq.s (6)-(8) assuming systems 1,2,3 as TRP, H03 and TMI, 

respectively. TPR is assumed as reference for the calibration (i.e. b1=bTMI=0 and s1=sTMI=1) whereas TMI is the 
reference for scale of analysis which means that IFOVs of RTPR and RH03 are averaged onto the TMI ~12 x 12 km2 

IFOVs. Note that the choice of the reference calibration system is arbitrary even though the other alternative 
options do not change the final results (not shown). As stated in the triple colocation system equation (7) the error 
variance depends from the representativeness error, which is described, in the triple colocation system by the mixed 
moment between errors of system 1 and 2 which is in our case Mδ1,2= MδTPR,TMI. While it is difficult to exactly 
determinate the Mδ1,2 term, it is easy to find, from (7), its range of variation by imposing that σδi

2>0. Figure 13 
shows the RMSE obtained after running the triple colocation as a function of Mδ1,2 for the ocean stratiform case. 
As evident from this figure, the Mδ1,2 has a small effect of RMSEH03 whereas, at larger Mδ1,2 TMI performs better 
than TPR and the opposite is true for Mδ1,2 < 0.4. Thus, at the scale of TMI, TMI perform best. On the contrarily if 
TRP had a smaller representativeness error it would perform best. It is interesting how the application of the triple 
colocation penalizes H03 product (RMSEH03~5.5 when Mδ1,2=0) whereas RMSETMI~2 and RMSETPR~1.6 mm/h. 
This is because, as evident in Figure 10, the covariance (Cij=ρij!σi!σj where ρ=correlation coefficient and  
σ=standard deviaton), between TPR and H03 is very low as well as that between H03 and TMI while the 
covariance between TPR and TMI is relatively high. In eq (7), for σδ2

2 , it reads C12 and C23 are low and C13 is high, 
respectively. Eventually, Table 9 list the scores obtained by the triple colocation when ocean stratiform and 
convective rain regimes are selected. These tables also list the calibration coefficients of eq. s (5)-(6). 
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Figure 13: RMSE as a function of representativeness error variance: term Mδ12 in eq. (7). 

 
TC (OCEAN convective) 

Scores All year DJF MAM JJA SON 
sTPR 1.00 1.00 1.00 1.00 1.00 
sH03 0.14 0.16 0.04 -0.01 0.09 
sTMI 0.55 1.38 0.37 -0.03 0.81 
bTPR 0.00 0.00 0.00 0.00 0.00 
bH03 12.49 4.79 26.75 -13.44 30.97 
bTMI 5.92 1.96 5.64 -16.18 5.07 
σ2

δTPR 37.81 17.76 11.85 15.42 73.94 
σ2

δH03 319.64 32.41 1004.90 94.39 1359.30 
σ2

δTMI 11.60 0.51 7.86 76.25 -1.51 
RMSTPR 6.15 4.21 3.44 3.93 8.60 
RMSH03 17.96 5.75 31.71 9.72 36.97 
RMSTMI 4.72 2.81 3.48 8.74 3.93 
Ns. 2956 1133 451 7 1365 

 
Table 9: triple colocation score in case of Ocean stratiform and Ocean convective rain regimes. The Symbol 

“sx”, “bx” σ2
x and RMSx stands for scaling factor, bias, error variance and root mean square error of system x= 

TPR or TMI or H03, respectively. Values in the  table refer to the case where Mδ12 in eq. (7) is put to zero. 
 

10 CONCLUSIONS 
This work analyzed one year of space-time collocated data of rain rate retrievals from June 2012 to May 3013 

derived by a prototype version H03, TRMM TMI (2A12 v7) and TPR (2A25 v7) products. The selected target area 
is the North African and Mediterranean region. This choice is because the next future extension of HSAF products 
over the MSG full disk (mainly the African territory) needs a benchmark for tracking the product’s performance 
evaluation. The different temporal upgrades of H01 and H02 leaded to consider a prototype H03 instead of the 
“state of the art” H03. As a consequence the H03 prototype we considered ingests only H02 ignoring H01. Even 
though this surely have an impact on the results of this work, a preliminarily statistical analysis of potential 
availability of H01 showed that the number of ignored H01 rain rate retrievals weight approximately 20%. 

Keeping in mind what just mentioned, the results highlight an overall rain underestimation of H03 product more 
pronounced for convective cases. Dual colocation error score of H03 are more in agreement with TMI rain rate 
retrievals that with those from TPR. This is some way expected since H03 ingest microwave retrievals, which are 
more consistent with TMI retrieval sharing the same principle of measurements. 

Spatial correlation analysis evidences too an higher correlation of RH03 with respect to RTMI and RTPR indicating as 
the RH03 is more spatially smoothed that other reference retrievals. This is also confirmed by visual inspection of 
case studies. The skill scores of H03 evidenced very high false alarms (~80%). However, the visual inspection of 
several case studies has showed as an important contribution to high false alarms comes from areas where RH03 

TC (OCEAN stratiform) 
Scores All year DJF MAM JJA SON 
sTPR 1.00 1.00 1.00 1.00 1.00 
sH03 0.34 0.13 0.19 -0.29 0.31 
sTMI 1.02 3.20 0.58 1.09 0.92 
bTPR 0.00 0.00 0.00 0.00 0.00 
bH03 3.64 5.40 3.54 -1.61 6.71 
bTMI 1.58 0.44 1.45 0.29 2.54 
σ2

δTPR 2.77 3.93 0.92 0.20 3.24 
σ2

δH03 27.48 47.83 22.42 2.05 62.72 
σ2

δTMI 1.07 -0.36 1.63 0.00 2.57 
RMSTPR 1.66 1.98 0.96 0.45 1.80 
RMSH03 5.39 6.95 4.78 1.51 8.19 
RMSTMI 1.92 1.25 1.53 0.32 2.83 
Ns. 13160 4709 3128 193 5130 
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correctly detect precipitation systems even though the detected contours of single cells might differ with those 
detected by the reference system. Additional the rain underestimation of H03 also contribute to the invariant false 
alarm rates for variable rain thresholds.  

Eventually, triple colocation methodology shows scarce dependency of H03 RMS to the representativeness error 
as opposed to what happens for TMI and TPR. Indeed at the scale of TMI, It seems to perform better that TPR but 
the opposite would be true at the scale of TPR.  
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11 APPENDIX A: Triple collocation system 

11.1 Problem definition 
Suppose you have a measured variable xi that is linearly related with the true variable θ plus the error εi of the 

measuring system i-th (i=1,2,3) through an error bias bi and a scaling factor si: 
 

xi = si θ +bi +δi( )                                                                                 (A1) 

which is equivalent to: 
 

xi = siθ +βi +εi                                                                                  (A2) 
 
When the si!bi=βi and si!δi=εi The two equations are formally the same even though they lead to not identical 

results. However, the first one equation is more correct since in the reality when the true variable is zero the 
measuring instrument still scale the observation following its calibration scale factors si. In that case the instrument 
just scale the noise component. For this reason, for what follows, we referrer to equation (A1). 

The goal of the triple collocation is to calculate the error variance terms of δi. To this end, the first step is the 
calculation of the calibration constants si, bi. 

 

11.2 Definitions 
 
i = 1, 2, 3. Index that identifies a measuring system. 
xi = Measured variable from the i-th observing system. 
θ = True (unknow) variable. 
δi = Random error of i-th measurement system. 
bi = Error bias (also called average error or accuracy) of i-th measurement system. 
si = Scaling factor (also trend of gain factor) of i-th measurement system. 
 
Mxi = 1st order moment of variables xi (the mean).  Mxi =<xi>: 
Mxi,j = 2nd order mixed moment of variables xi, xj.  Mxii =<xi

2>: 
Cxi,j = Covariance of variables xi, xj.    Cxij = Mxij- Mxi Mxj 
ρxi,j = Correlation coefficient between variables xi, xj. ρxi,j = Cxij!σxi

-1!σxj
-1 

σxi = Standard deviation of variable xi.   σxi = Mxii- Mxi
2 

<!> = spatial-temporal average. 
 

11.3 Hypothesis 
Some hypothesis (HPs) that greatly simplifies the triple collocation theory has to be done to allow a practical 

implementation of the method. Those hypotheses concern the structure of δi, its cross auto-correlations and the 
cross correlation between “δi“ and the true value “θ”.  

 
 HP1:      

 HP2:      

 HP3:      

 HP4:      

 HP5:      

 HP6:     

Mδi = 0

Mδi ,θ = 0

Mδ1,3 = 0

Mδ2,3 = 0

Mδ1,2 ≠ 0

a1 =1; b1 = 0
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HP1-2: In particular the random errors are hypnotized to have zero-mean Gaussian distribution and  

  they are required to be uncorrelated from the true value “θ” (HP2).  
HP3-4:  Additionally, the correlation among errors from different systems may be zero. The   

  assumption of uncorrelated errors is by no means evident, and should, if possible, be tested.  
HP5:  A positive error correlation term can be introduced in the triple collocation technique to include the 

  error of representativeness associated to the different sensors’ resolutions as in HP5. The   
  representativeness error is discussed in more details in the main text. Now is important to   
  remember that the quantities Mδi,j are something related to the representativeness error (also called 
  discretization error) of systems “i” and “j” with respect to a fixed reference scale. Mδ1,2≠0 
  for example, describe a representativeness error of systems 1 and 2 when the scale of system 3  
  is the reference scale for the comparison. Note that the errors terms δi’s might be thought as the  
  sum of two contributions: a measurement error and a representativeness error. The former is  
  typically an instrumental error, which can be sensor dependent whereas the latter is a scale 
  dependent error contribution. Observations at large scales miss information at finer scales and this 
  is took into account trough a representativeness error.  

HP6:   Eventually, to be able to calculate the calibration constant in (A1) at least one of the three  
  measuring systems have to be taken as reference for the calibration of the other twos. We   
  arbitrarily choose system number 1 as the reference system. We have the freedom to do this  
  because results on the errors do not depend on this choice. In the description that follows the  
  system 1 is taken as reference. This implies to put bias b1 and gain factor s1 equal to zero and  
  equals to unity.  

11.4 Calibration constants 
First let’s express the moments of order of 1 for i-th system: 
 
 

Mxi =< xi >= si Mθ +bi +Mδi( )                                                                   (A3) 

 
To calculate the calibration constants, one of the three systems has to be chosen as reference. However, this 

choice does not affect the final result. We chose system k-th (with k=1 or 2 or 3) as reference calibration system, 
which implies to assume sk=1 and bk=0 and as a consequence Mθ=<θ>=Mxk. Note also that also that Mδi=0,under 
HP1. Then (A3) transforms into: 

 

bi =
Mxi

si
−Mxk                                                                       (A4) 

 
Second step is calculate the second order moments Mxii=<xi

2>: 
 

Mxii =< xi
2 >= s2i Mθθ +Mδii +bi

2 + 2biMθ( )                                                   (A5) 

 
Using Mθ=Mxk and substituting (A4) into (A5) we obtain:  
 

Mxii =< xi
2 >= si

2 Mθθ +Mδii +
Mxi

2

si
2
−Mxk

2
"

#
$$

%

&
''                                               (A6) 

 
The latter equation can be expressed in terms of error variance Mδii, recognizing that σ2

xi=Mxii-(Mxi)2: 
 

Mδii =< δi
2 >=

σ xi
2

si
2
− Mθθ −Mxk

2( )                                                       (A7) 
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The term Mδii in (A7) is our target quantity since it is the error variance σδi

2. To fully resolve (A7) we have to 
calculate si and Mθθ. Το this aim we make use of mixed moments: 

 

Mxij =< xix j >= sis j Mθθ +bjMθ +biMθ +bibj +Mδij( )                                    (A8) 

 
Substituting (A4) into (A8) we obtain: 
 

Mxij =< xixj >= sis j Mθθ −Mxk
2 +Mδij +

MxiM xj

sis j

"

#
$
$

%

&
'
'                                    (A9) 

 
And recognizing that the covariance of measurements xi and xj is Cxij=Mxij-Mxi!Mxj we can rewrite (A9) as: 
 

Cxij = sis j Mθθ −Mxk
2 +Mδij( )                                                  (A10) 

 
Eq. (A10) when written for the three systems produces: 
 

Cxij = sis j Mθθ −Mxk
2 +Mδij( )

Cxik = sisk Mθθ −Mxk
2 +Mδik( )

Cxjk = s jsk Mθθ −Mxk
2 +Mδ jk( )

"

#

$
$

%

$
$

                                              (A11) 

 
To solve (A11) we have to make some hypothesis. We fixed the system k-th as that for the reference calibration 

which leads to sk=1. If the scale of analysis is fixed to that of system i-th then Mδij=Mδik=0 which is consistent with 
HP3- HP 5 Then system (A11) reduces to: 

 

Cxij = sis j Mθθ −Mxk
2( )

Cxik = si Mθθ −Mxk
2( )

Cxjk = s j Mθθ −Mxk
2 +Mδ jk( )

"

#

$
$

%

$
$

                                             (A12) 

 
The ratio between the first and second equation of (A12) gives the coefficient sj while substituting the third 

equation into the first one gives the coefficient si: 
 

si =
Cxij

Cxjk − s jMδ jk

s j =
Cxij
Cxik

"

#

$
$

%

$
$

                                                           (A13) 

 
(A13) gives the calibration coefficients when “k” and “i” are the systems chosen as reference for calibration and 

scale of analysis, respectively. Of course system i, j, k can be one of the three systems 1,2,3 with i ≠ j ≠ k. 
 

11.5 Error variances 
The last step is to calculate the error variances σδi

2. This is straightforward using the third equation of (A13) into 
(A7) obtaining: 
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σδm
2 =

σ xm
2

sm
2

!

"
##

$

%
&&−
Cxjk
s j

+Mδik                                                              (A14) 

 
Eq. (A14) can be further simplified substituting the coefficient sj from the second equation of (A13): 
 

σδm
2 =

σ xm
2

sm
2

!

"
##

$

%
&&−
CxkjCxki
Cxji

+Mδki                                                          (A15) 

 
Eq. (A15) is the compact general form of the triple collocation solution for systems i, j, k, i ≠ j ≠ k ranging from 1 

to 3 and where m =i or j or k is just an index ranging from 1 to 3. Note that in (A15) 
System k = reference system for calibration 
System i = reference system for scale analysis.  
 
Note that error system variance in (A14) has a variable term, which is the square of the scaled measurement 

variance, and invariant terms, which are the second and third term of the right side of (A14).  
 
For example when system i=3 and k=1, and j= 2, we have: 
 

σδ1
2 =σ x1

2 −
Cx12Cx13
Cx23

+Mδ12

σδ2
2 =σ x2

2 Cx13
Cx23

"

#
$$

%

&
''

2

−
Cx12Cx13
Cx23

+Mδ12

σδ3
2 =σ x3

2 Cx12
Cx23

−
Mδ12

Cx13

"

#
$$

%

&
''

2

−
Cx12Cx13
Cx23

+Mδ12

(

)

*
*
*
*

+

*
*
*
*

                                                     (A16) 

 
The aforementioned demonstration assumes that the reference systems for calibration and scale of analysis are 

two different measuring systems. There is no apparent reason to make such assumption. However, if the same 
measuring system is taken as reference for both scale analysis and calibration we have a slightly different solution. 

The error variance formulation in (A14) remains unchanged but the coefficients in (A13) slightly changes. If 
system k is unique reference system, the representativeness error Mδjk=Mδik=0 and Mδij≠0, the calibration 
coefficients in (A13) rewrites into: 

 

si =
Cxij

Cxjk − s jMδij

s j = si
Cxjk
Cxik

"

#

$
$

%

$
$

                                                                 (A17) 

 
Lastly, note that (A13) and (A17) are the same if representativeness error, Mδij, is zero.  
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